新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第09講 二次函數(shù)與冪函數(shù)(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第09講 二次函數(shù)與冪函數(shù)(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第09講 二次函數(shù)與冪函數(shù)(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第09講 二次函數(shù)與冪函數(shù)(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第09講 二次函數(shù)與冪函數(shù)(含解析)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第09講二次函數(shù)與冪函數(shù)(精講)題型目錄一覽①冪函數(shù)的定義與圖像②冪函數(shù)的性質(zhì)和綜合應(yīng)用③二次函數(shù)單調(diào)性問題④二次函數(shù)最值問題⑤二次函數(shù)恒成立問題★【文末附錄-冪函數(shù)及冪函數(shù)解題思路思維導(dǎo)圖】一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理1.冪函數(shù)的定義一般地,SKIPIF1<0(SKIPIF1<0為有理數(shù))的函數(shù),即以\t"/item/%E5%B9%82%E5%87%BD%E6%95%B0/_blank"底數(shù)為\t"/item/%E5%B9%82%E5%87%BD%E6%95%B0/_blank"自變量,冪為\t"/item/%E5%B9%82%E5%87%BD%E6%95%B0/_blank"因變量,\t"/item/%E5%B9%82%E5%87%BD%E6%95%B0/_blank"指數(shù)為常數(shù)的函數(shù)稱為冪函數(shù).2.冪函數(shù)的特征:同時(shí)滿足一下三個(gè)條件才是冪函數(shù)①SKIPIF1<0的系數(shù)為1; ②SKIPIF1<0的底數(shù)是自變量; ③指數(shù)為常數(shù).(3)冪函數(shù)的圖象和性質(zhì)3.常見的冪函數(shù)圖像及性質(zhì):函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象定義域SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0值域SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0奇偶性奇偶奇非奇非偶奇單調(diào)性在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0上單調(diào)遞增在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減公共點(diǎn)SKIPIF1<04.二次函數(shù)的圖像二次函數(shù)SKIPIF1<0的圖像是一條拋物線,二次項(xiàng)系數(shù)a的正負(fù)決定圖象的開口方向,對(duì)稱軸方程為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0.【常用結(jié)論】1.冪函數(shù)SKIPIF1<0在第一象限內(nèi)圖象的畫法如下:①當(dāng)SKIPIF1<0時(shí),其圖象可類似SKIPIF1<0畫出;②當(dāng)SKIPIF1<0時(shí),其圖象可類似SKIPIF1<0畫出;③當(dāng)SKIPIF1<0時(shí),其圖象可類似SKIPIF1<0畫出.2.實(shí)系數(shù)一元二次方程SKIPIF1<0的實(shí)根符號(hào)與系數(shù)之間的關(guān)系(1)方程有兩個(gè)不等正根SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)方程有兩個(gè)不等負(fù)根SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)方程有一正根和一負(fù)根,設(shè)兩根為SKIPIF1<0SKIPIF1<0SKIPIF1<0二、題型分類精講二、題型分類精講題型一冪函數(shù)的定義與圖像策略方法若冪函數(shù)y=xα(α∈Z)是偶函數(shù),則α必為偶數(shù).當(dāng)α是分?jǐn)?shù)時(shí),一般將其先化為根式,再判斷.【典例1】已知冪函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的值為(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設(shè)出冪函數(shù)的解析式,根據(jù)已知,求出參數(shù)的關(guān)系式,即可計(jì)算作答.【詳解】依題意,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B【題型訓(xùn)練】一、單選題1.現(xiàn)有下列函數(shù):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0;⑥SKIPIF1<0;⑦SKIPIF1<0,其中冪函數(shù)的個(gè)數(shù)為(

)A.1 B.2 C.3 D.4【答案】B【分析】根據(jù)冪函數(shù)的定義逐個(gè)辨析即可【詳解】?jī)绾瘮?shù)滿足SKIPIF1<0形式,故SKIPIF1<0,SKIPIF1<0滿足條件,共2個(gè)故選:B2.已知SKIPIF1<0為冪函數(shù),且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)冪函數(shù)及SKIPIF1<0求其解析式,進(jìn)而求SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0為冪函數(shù),設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0.故選:B3.下列冪函數(shù)中,定義域?yàn)镽的冪函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用分?jǐn)?shù)指數(shù)式與根式的互化,結(jié)合具體函數(shù)的定義域的求法逐項(xiàng)分析即可求出結(jié)果.【詳解】ASKIPIF1<0,則需要滿足SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故A不符合題意;BSKIPIF1<0,則需要滿足SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故B不符合題意;CSKIPIF1<0,則需要滿足SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故C不符合題意;DSKIPIF1<0,故函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故D正確;故選:D.4.已知冪函數(shù)SKIPIF1<0的圖像過點(diǎn)SKIPIF1<0,則SKIPIF1<0的值域是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】先求出冪函數(shù)解析式,根據(jù)解析式即可求出值域.【詳解】SKIPIF1<0冪函數(shù)SKIPIF1<0的圖像過點(diǎn)SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的值域是SKIPIF1<0.故選:D.5.函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】C【分析】利用函數(shù)的奇偶性及冪函數(shù)的性質(zhì)進(jìn)行排除可得答案.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0為偶函數(shù),排除A,B選項(xiàng);易知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為增函數(shù),且增加幅度較為緩和,所以D不正確.故選:C.6.下列函數(shù)中,其圖像如圖所示的函數(shù)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)函數(shù)的性質(zhì)逐項(xiàng)分析即得.【詳解】由圖象可知函數(shù)為奇函數(shù),定義域?yàn)镾KIPIF1<0,且在SKIPIF1<0單調(diào)遞減,對(duì)于A,SKIPIF1<0,定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以函數(shù)為奇函數(shù),在SKIPIF1<0單調(diào)遞減,故A正確;對(duì)于B,SKIPIF1<0,定義域?yàn)镾KIPIF1<0,故B錯(cuò)誤;對(duì)于C,SKIPIF1<0,定義域?yàn)镾KIPIF1<0,故C錯(cuò)誤;對(duì)于D,SKIPIF1<0,定義域?yàn)镾KIPIF1<0,SKIPIF1<0,函數(shù)為偶函數(shù),故D錯(cuò)誤.故選:A.7.如圖所示是函數(shù)SKIPIF1<0(SKIPIF1<0且互質(zhì))的圖象,則(

)A.SKIPIF1<0是奇數(shù)且SKIPIF1<0 B.SKIPIF1<0是偶數(shù),SKIPIF1<0是奇數(shù),且SKIPIF1<0C.SKIPIF1<0是偶數(shù),SKIPIF1<0是奇數(shù),且SKIPIF1<0 D.SKIPIF1<0是偶數(shù),且SKIPIF1<0【答案】C【分析】根據(jù)冪函數(shù)的性質(zhì)及圖象判斷即可;【詳解】解:SKIPIF1<0函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對(duì)稱,故SKIPIF1<0為奇數(shù),SKIPIF1<0為偶數(shù),在第一象限內(nèi),函數(shù)是凸函數(shù),故SKIPIF1<0,故選:C.二、填空題8.函數(shù)SKIPIF1<0的定義域?yàn)開______.【答案】SKIPIF1<0【解析】將函數(shù)解析式變形為SKIPIF1<0,即可求得原函數(shù)的定義域.【詳解】SKIPIF1<0,所以,SKIPIF1<0.因此,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.故答案為:SKIPIF1<0.9.設(shè)集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0/SKIPIF1<0【分析】根據(jù)指數(shù)函數(shù)與冪函數(shù)的性質(zhì),先求出集合A、B,然后根據(jù)交集的定義即可求解.【詳解】解:因?yàn)榧蟂KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.10.若函數(shù)SKIPIF1<0的圖像經(jīng)過點(diǎn)SKIPIF1<0與SKIPIF1<0,則m的值為____________.【答案】81【分析】根據(jù)函數(shù)圖象過的點(diǎn)求得參數(shù)SKIPIF1<0,可得函數(shù)解析式,再代入求值即得答案.【詳解】由題意函數(shù)SKIPIF1<0的圖像經(jīng)過點(diǎn)SKIPIF1<0與SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0故SKIPIF1<0,故答案為:8111.冪函數(shù)SKIPIF1<0滿足:任意SKIPIF1<0有SKIPIF1<0,且SKIPIF1<0,請(qǐng)寫出符合上述條件的一個(gè)函數(shù)SKIPIF1<0___________.【答案】SKIPIF1<0(答案不唯一)【分析】取SKIPIF1<0,再驗(yàn)證奇偶性和函數(shù)值即可.【詳解】取SKIPIF1<0,則定義域?yàn)镽,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0.故答案為:SKIPIF1<0.12.已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0在SKIPIF1<0上不是增函數(shù),則a的一個(gè)取值為___________.【答案】-2(答案不唯一,滿足SKIPIF1<0或SKIPIF1<0即可)【分析】作出y=x和y=SKIPIF1<0的圖象,數(shù)形結(jié)合即可得a的范圍,從而得到a的可能取值.【詳解】y=x和y=SKIPIF1<0的圖象如圖所示:∴當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),y=SKIPIF1<0有部分函數(shù)值比y=x的函數(shù)值小,故當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上不是增函數(shù).故答案為:-2.題型二冪函數(shù)的性質(zhì)和綜合應(yīng)用策略方法(1)緊扣冪函數(shù)SKIPIF1<0的定義、圖像、性質(zhì),特別注意它的單調(diào)性在不等式中的作用,這里注意SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0為偶函數(shù).(2)若冪函數(shù)y=xα在(0,+∞)上單調(diào)遞增,則α>0;若在(0,+∞)上單調(diào)遞減,則α<0.(3)在比較冪值的大小時(shí),必須結(jié)合冪值的特點(diǎn),選擇適當(dāng)?shù)暮瘮?shù),借助其單調(diào)性進(jìn)行比較.【典例1】函數(shù)SKIPIF1<0同時(shí)滿足①對(duì)于定義域內(nèi)的任意實(shí)數(shù)x,都有SKIPIF1<0;②在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的值為(

)A.8 B.4 C.2 D.1【答案】B【分析】由SKIPIF1<0的值依次求出SKIPIF1<0的值,然后根據(jù)函數(shù)的性質(zhì)確定SKIPIF1<0,得函數(shù)解析式,計(jì)算函數(shù)值.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0分別是SKIPIF1<0,在定義域內(nèi)SKIPIF1<0,即SKIPIF1<0是偶函數(shù),因此SKIPIF1<0取值SKIPIF1<0或0,SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上不是減函數(shù),只有SKIPIF1<0滿足,此時(shí)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B.【題型訓(xùn)練】一、單選題1.已知冪函數(shù)SKIPIF1<0為偶函數(shù),則實(shí)數(shù)SKIPIF1<0的值為(

)A.3 B.2 C.1 D.1或2【答案】C【分析】由題意利用冪函數(shù)的定義和性質(zhì),得出結(jié)論.【詳解】SKIPIF1<0冪函數(shù)SKIPIF1<0為偶函數(shù),SKIPIF1<0,且SKIPIF1<0為偶數(shù),則實(shí)數(shù)SKIPIF1<0,故選:C2.冪函數(shù)SKIPIF1<0SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對(duì)稱,且在SKIPIF1<0上是增函數(shù),則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<0【答案】D【分析】分別代入SKIPIF1<0的值,由冪函數(shù)性質(zhì)判斷函數(shù)增減性即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由冪函數(shù)性質(zhì)得,在SKIPIF1<0上是減函數(shù);所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由冪函數(shù)性質(zhì)得,在SKIPIF1<0上是常函數(shù);所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由冪函數(shù)性質(zhì)得,圖象關(guān)于y軸對(duì)稱,在SKIPIF1<0上是增函數(shù);所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由冪函數(shù)性質(zhì)得,圖象關(guān)于y軸對(duì)稱,在SKIPIF1<0上是增函數(shù);故選:D.3.已知SKIPIF1<0、SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的(

)條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要【答案】C【分析】利用函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增即可判斷出結(jié)論.【詳解】SKIPIF1<0是奇函數(shù)且為遞增函數(shù),所以SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,同理,SKIPIF1<0,則SKIPIF1<0,函數(shù)單調(diào)遞增,得SKIPIF1<0;SKIPIF1<0“SKIPIF1<0”是“SKIPIF1<0”的充要條件.故選:C.4.已知冪函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先根據(jù)已知條件求出SKIPIF1<0的解析式,再根據(jù)SKIPIF1<0的單調(diào)性和奇偶性求解即可.【詳解】由題意可知,SKIPIF1<0,解得,SKIPIF1<0,故SKIPIF1<0,易知,SKIPIF1<0為偶函數(shù)且在SKIPIF1<0上單調(diào)遞減,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得,SKIPIF1<0或SKIPIF1<0.故SKIPIF1<0的取值范圍為SKIPIF1<0.故選:C.5.已知SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用中間值SKIPIF1<0比較a,b的大小,再讓b,c與中間值SKIPIF1<0比較,判斷b,c的大小,即可得解.【詳解】SKIPIF1<0,又因?yàn)橥ㄟ^計(jì)算知SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:B二、多選題6.已知冪函數(shù)SKIPIF1<0的圖象經(jīng)過點(diǎn)SKIPIF1<0,則下列命題正確的有(

).A.函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0B.函數(shù)SKIPIF1<0為非奇非偶函數(shù)C.過點(diǎn)SKIPIF1<0且與SKIPIF1<0圖象相切的直線方程為SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】BC【分析】先利用待定系數(shù)法求出冪函數(shù)的解析式,寫出函數(shù)的定義域、判定奇偶性,即判定選項(xiàng)A錯(cuò)誤、選項(xiàng)B正確;設(shè)出切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)的幾何意義和過點(diǎn)SKIPIF1<0求出切線方程,進(jìn)而判定選項(xiàng)C正確;平方作差比較大小,進(jìn)而判定選項(xiàng)D錯(cuò)誤.【詳解】設(shè)SKIPIF1<0,將點(diǎn)SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,對(duì)于A:SKIPIF1<0的定義域?yàn)镾KIPIF1<0,即選項(xiàng)A錯(cuò)誤;對(duì)于B:因?yàn)镾KIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0不具有奇偶性,即選項(xiàng)B正確;對(duì)于C:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則切線斜率為SKIPIF1<0,切線方程為SKIPIF1<0,又因?yàn)榍芯€過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即切線方程為SKIPIF1<0,即SKIPIF1<0,即選項(xiàng)C正確;對(duì)于D:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,即SKIPIF1<0成立,即選項(xiàng)D錯(cuò)誤.故選:BC.7.已知函數(shù)SKIPIF1<0是冪函數(shù),對(duì)任意SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,滿足SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0的值為負(fù)值,則下列結(jié)論可能成立的有(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】BC【解析】首先根據(jù)函數(shù)是冪函數(shù),求得SKIPIF1<0的兩個(gè)值,然后根據(jù)題意判斷函數(shù)在SKIPIF1<0上是增函數(shù),確定SKIPIF1<0的具體值,再結(jié)合函數(shù)的奇偶性可判斷得正確選項(xiàng).【詳解】由于函數(shù)SKIPIF1<0為冪函數(shù),故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.由于“對(duì)任意SKIPIF1<0,且SKIPIF1<0,滿足SKIPIF1<0”知,函數(shù)在SKIPIF1<0上為增函數(shù),故SKIPIF1<0.易見SKIPIF1<0,故函數(shù)SKIPIF1<0是單調(diào)遞增的奇函數(shù).由于SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,此時(shí),若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0知,SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.綜上可知,SKIPIF1<0,且SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.故選:BC.【點(diǎn)睛】本題解題關(guān)鍵是熟知冪函數(shù)定義和性質(zhì)突破參數(shù)m,再綜合應(yīng)用奇偶性和單調(diào)性的性質(zhì)確定SKIPIF1<0和SKIPIF1<0的符號(hào)情況.三、填空題8.已知冪函數(shù)SKIPIF1<0是偶函數(shù),在SKIPIF1<0上遞增的,且滿足SKIPIF1<0.請(qǐng)寫出一個(gè)滿足條件的SKIPIF1<0的值,SKIPIF1<0__________.【答案】SKIPIF1<0【分析】結(jié)合偶函數(shù)和單調(diào)性及SKIPIF1<0可得,答案不是唯一的.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0;因?yàn)镾KIPIF1<0在SKIPIF1<0上遞增的,所以SKIPIF1<0;因?yàn)閮绾瘮?shù)SKIPIF1<0是偶函數(shù),所以SKIPIF1<0的值可以為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題主要考查冪函數(shù)的性質(zhì),冪函數(shù)的單調(diào)性和奇偶性取決于SKIPIF1<0,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).9.已知y=f(x)是奇函數(shù),當(dāng)x≥0時(shí),SKIPIF1<0,則f(-8)的值是____.【答案】SKIPIF1<0【分析】先求SKIPIF1<0,再根據(jù)奇函數(shù)求SKIPIF1<0【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】本題考查根據(jù)奇函數(shù)性質(zhì)求函數(shù)值,考查基本分析求解能力,屬基礎(chǔ)題.10.已知函數(shù)SKIPIF1<0,則關(guān)于SKIPIF1<0的表達(dá)式SKIPIF1<0的解集為__________.【答案】SKIPIF1<0【分析】利用冪函數(shù)的性質(zhì)及函數(shù)的奇偶性和單調(diào)性即可求解.【詳解】由題意可知,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0是奇函數(shù),由冪函數(shù)的性質(zhì)知,函數(shù)SKIPIF1<0在函數(shù)SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以關(guān)于SKIPIF1<0的表達(dá)式SKIPIF1<0的解集為SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題11.已知冪函數(shù)SKIPIF1<0的圖像關(guān)于y軸對(duì)稱.(1)求SKIPIF1<0的解析式;(2)求函數(shù)SKIPIF1<0在SKIPIF1<0上的值域.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)冪函數(shù)的定義和性質(zhì)求出m的值即可;(2)由(1)求出函數(shù)SKIPIF1<0的解析式,結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【詳解】(1)因?yàn)镾KIPIF1<0是冪函數(shù),所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.又SKIPIF1<0的圖像關(guān)于y軸對(duì)稱,所以SKIPIF1<0,故SKIPIF1<0.(2)由(1)可知,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0.12.已知冪函數(shù)SKIPIF1<0的定義域?yàn)镽.(1)求實(shí)數(shù)SKIPIF1<0的值;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上不單調(diào),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由冪函數(shù)定義求得參數(shù)SKIPIF1<0值;(2)由二次函數(shù)的單調(diào)性知對(duì)稱軸在開區(qū)間SKIPIF1<0上,再由指數(shù)函數(shù)性質(zhì),對(duì)數(shù)的定義得結(jié)論.【詳解】(1)由題意SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0;(2)由(1)SKIPIF1<0,SKIPIF1<0的對(duì)稱軸SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上不單調(diào),所以SKIPIF1<0,解得SKIPIF1<0.題型三二次函數(shù)單調(diào)性問題策略方法二次函數(shù)單調(diào)性問題的求解策略(1)對(duì)于二次函數(shù)的單調(diào)性,關(guān)鍵是開口方向與對(duì)稱軸的位置,若開口方向或?qū)ΨQ軸的位置不確定,則需要分類討論求解.(2)利用二次函數(shù)的單調(diào)性比較大小,一定要將待比較的兩數(shù)通過二次函數(shù)的對(duì)稱性轉(zhuǎn)化到同一單調(diào)區(qū)間上比較.【典例1】“函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件C.充分且必要條件 D.既不充分也不必要條件【答案】C【分析】根據(jù)二次函數(shù)的單調(diào)性以及充分且必要條件的概念可得答案.【詳解】由函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),可得SKIPIF1<0,即SKIPIF1<0;由SKIPIF1<0,得SKIPIF1<0,得函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),所以“函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào)”是“SKIPIF1<0”的充分且必要條件.故選:C【題型訓(xùn)練】一、單選題1.若二次函數(shù)SKIPIF1<0,滿足SKIPIF1<0,則下列不等式成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】首先根據(jù)SKIPIF1<0,判斷出二次函數(shù)的對(duì)稱軸,然后再根據(jù)二次函數(shù)的單調(diào)性即可得出答案.【詳解】因?yàn)镾KIPIF1<0,所以二次函數(shù)SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:B.2.已知SKIPIF1<0在SKIPIF1<0為單調(diào)函數(shù),則a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求出SKIPIF1<0的單調(diào)性,從而得到SKIPIF1<0.【詳解】SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故要想在SKIPIF1<0為單調(diào)函數(shù),需滿足SKIPIF1<0,故選:D3.已知二次函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn)都在區(qū)間SKIPIF1<0內(nèi),則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)二次函數(shù)的對(duì)稱軸與單調(diào)區(qū)間,結(jié)合已知可得到關(guān)于a的不等式,進(jìn)而求解.【詳解】二次函數(shù)SKIPIF1<0,對(duì)稱軸為SKIPIF1<0,開口向上,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,要使二次函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn)都在區(qū)間SKIPIF1<0內(nèi),需SKIPIF1<0,解得SKIPIF1<0故實(shí)數(shù)a的取值范圍是SKIPIF1<0故選:C4.已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0在R上為減函數(shù),則實(shí)數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用二次函數(shù)、指數(shù)函數(shù)的單調(diào)性以及函數(shù)單調(diào)性的定義,建立關(guān)于a的不等式組,解不等式組即可得答案.【詳解】解:因?yàn)楹瘮?shù)SKIPIF1<0在R上為減函數(shù),所以SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)a的取值范圍為SKIPIF1<0,故選:B.二、填空題5.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,則實(shí)數(shù)SKIPIF1<0的取值范圍為__.【答案】SKIPIF1<0【分析】根據(jù)一元二次函數(shù)單調(diào)性,結(jié)合條件,可知SKIPIF1<0,然后求出SKIPIF1<0的取值范圍即可.【詳解】易知二次函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,又因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.6.若函數(shù)SKIPIF1<0滿足下列性質(zhì):(1)定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0;(2)圖象關(guān)于直線SKIPIF1<0對(duì)稱;(3)對(duì)任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0.寫出函數(shù)SKIPIF1<0的一個(gè)解析式:_______.【答案】SKIPIF1<0(不唯一)【分析】根據(jù)二次函數(shù)的對(duì)稱性、值域及單調(diào)性可得一個(gè)符合條件的函數(shù)式.【詳解】由二次函數(shù)的對(duì)稱性、值域及單調(diào)性可得解析式SKIPIF1<0,此時(shí)SKIPIF1<0對(duì)稱軸為SKIPIF1<0,開口向上,滿足(SKIPIF1<0),因?yàn)閷?duì)任意SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,等價(jià)于SKIPIF1<0在SKIPIF1<0上單調(diào)減,∴SKIPIF1<0,滿足(SKIPIF1<0),又SKIPIF1<0,滿足(SKIPIF1<0),故答案為:SKIPIF1<0(不唯一).7.若定義在R上的二次函數(shù)f(x)=ax2-4ax+b在區(qū)間[0,2]上是增函數(shù),且f(m)≥f(0),則實(shí)數(shù)m的取值范圍是_____________.【答案】[0,4]【分析】可先求出二次函數(shù)的對(duì)稱軸SKIPIF1<0,再根據(jù)函數(shù)的增減性及對(duì)稱性可求得m的取值范圍.【詳解】二次函數(shù)的對(duì)稱軸SKIPIF1<0,SKIPIF1<0時(shí)函數(shù)單調(diào)遞增,SKIPIF1<0,二次函數(shù)開口向下,SKIPIF1<0函數(shù)單調(diào)遞減,根據(jù)二次函數(shù)的對(duì)稱性,SKIPIF1<0,f(m)≥f(0),SKIPIF1<0【點(diǎn)睛】二次函數(shù)是對(duì)稱函數(shù),解題時(shí),一定要根據(jù)對(duì)稱性來解題,防止漏解錯(cuò)解.題型四二次函數(shù)最值問題策略方法二次函數(shù)最值問題的類型及解題思路(1)類型:①對(duì)稱軸、區(qū)間都是給定的;②對(duì)稱軸動(dòng)、區(qū)間固定;③對(duì)稱軸定、區(qū)間變動(dòng).(2)解決這類問題的思路:抓住“三點(diǎn)一軸”數(shù)形結(jié)合,“三點(diǎn)”是指區(qū)間兩個(gè)端點(diǎn)和中點(diǎn),“一軸”指的是對(duì)稱軸,結(jié)合配方法,根據(jù)函數(shù)的單調(diào)性及分類討論的思想解決問題.【典例1】若函數(shù)f(x)=ax2+2ax+1在[-1,2]上有最大值4,則a的值為(

)A.SKIPIF1<0 B.-3 C.SKIPIF1<0或-3 D.4【答案】C【分析】按SKIPIF1<0分類討論求SKIPIF1<0的最大值,然后由最大值為4得參數(shù)值.【詳解】由題意得f(x)=a(x+1)2+1-a.①當(dāng)a=0時(shí),函數(shù)f(x)在區(qū)間[-1,2]上的值為常數(shù)1,不符合題意,舍去;②當(dāng)a>0時(shí),函數(shù)f(x)在區(qū)間[-1,2]上是增函數(shù),最大值為f(2)=8a+1=4,解得SKIPIF1<0;③當(dāng)a<0時(shí),函數(shù)f(x)在區(qū)間[-1,2]上是減函數(shù),最大值為f(-1)=1-a=4,解得a=-3.綜上可知,a的值為SKIPIF1<0或-3.故選:C.【題型訓(xùn)練】一、單選題1.已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.1 B.0 C.SKIPIF1<0 D.2【答案】A【分析】根據(jù)二次函數(shù)性質(zhì)求得最小值,由最小值得SKIPIF1<0值,從而再求得最大值.【詳解】∵SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴其最小值為SKIPIF1<0,∴其最大值為SKIPIF1<0.故選:A.2.已知函數(shù)SKIPIF1<0在SKIPIF1<0上為單調(diào)遞增函數(shù),則實(shí)數(shù)m的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】求導(dǎo),由單調(diào)性得到SKIPIF1<0在SKIPIF1<0上恒成立,由二次函數(shù)數(shù)形結(jié)合得到不等關(guān)系,求出m的取值范圍.【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上為單調(diào)遞增函數(shù),所以SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,要滿足SKIPIF1<0①,或SKIPIF1<0②,由①得:SKIPIF1<0,由②得:SKIPIF1<0,綜上:實(shí)數(shù)m的取值范圍是SKIPIF1<0.故選:D3.若函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為-1,則SKIPIF1<0(

)A.2或SKIPIF1<0 B.1或SKIPIF1<0 C.2 D.1【答案】D【分析】先求出二次函數(shù)的對(duì)稱軸,然后討論對(duì)稱軸與區(qū)間SKIPIF1<0的關(guān)系,求出其最小值,列方程可求出SKIPIF1<0的值【詳解】函數(shù)SKIPIF1<0圖象的對(duì)稱軸為SKIPIF1<0,圖象開口向上,(1)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,不符合SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí).則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0符合;(3)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0不符合,綜上可得SKIPIF1<0.故選:D4.已知二次函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由二次函數(shù)的值域可得出SKIPIF1<0,可得出SKIPIF1<0,則有SKIPIF1<0,利用基本不等式可求得結(jié)果.【詳解】若SKIPIF1<0,則函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,不合乎題意,因?yàn)槎魏瘮?shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,所以,SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故選:B.5.設(shè)二次函數(shù)SKIPIF1<0在SKIPIF1<0上有最大值,最大值為SKIPIF1<0,當(dāng)SKIPIF1<0取最小值時(shí),SKIPIF1<0(

)A.0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)二次函數(shù)的性質(zhì)求出SKIPIF1<0,然后利用基本不等式即得.【詳解】SKIPIF1<0在SKIPIF1<0上有最大值SKIPIF1<0,SKIPIF1<0且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),SKIPIF1<0有最小值2,故選:A.二、填空題6.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在最小值,則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【分析】根據(jù)二次函數(shù)的性質(zhì)確定在開區(qū)間SKIPIF1<0內(nèi)存在最小值的情況列不等式,即可得SKIPIF1<0的取值范圍是.【詳解】解:二次函數(shù)SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,且二次函數(shù)開口向上若函數(shù)在開區(qū)間SKIPIF1<0內(nèi)存在最小值,則SKIPIF1<0,即SKIPIF1<0,此時(shí)函數(shù)在SKIPIF1<0處能取到最小值,故SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.7.若函數(shù)SKIPIF1<0的定義域和值域均為SKIPIF1<0,則SKIPIF1<0的值為__________.【答案】SKIPIF1<0【分析】由二次函數(shù)的解析式,可知二次函數(shù)關(guān)于SKIPIF1<0成軸對(duì)稱,即可得到SKIPIF1<0,從而得到方程組,解得即可.【詳解】解:因?yàn)镾KIPIF1<0,對(duì)稱軸為SKIPIF1<0,開口向上,所以函數(shù)在SKIPIF1<0上單調(diào)遞增,又因?yàn)槎x域和值域均為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍去)或SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<08.函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)在SKIPIF1<0上的最大值為13,則實(shí)數(shù)SKIPIF1<0的值為___________.【答案】SKIPIF1<0或SKIPIF1<0【分析】令SKIPIF1<0,討論SKIPIF1<0或SKIPIF1<0,求出SKIPIF1<0的取值范圍,再利用二次函數(shù)的單調(diào)性即可求解.【詳解】∵SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,其對(duì)稱軸為SKIPIF1<0.該二次函數(shù)在SKIPIF1<0上是增函數(shù).①若SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,故當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0(SKIPIF1<0舍去).②若SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,故當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0.∴SKIPIF1<0或SKIPIF1<0(舍去).綜上可得SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.9.設(shè)SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0在定義域上滿足:①是非奇非偶函數(shù);②既不是增函數(shù)也不是減函數(shù);③有最大值,則實(shí)數(shù)a的取值范圍是__________.【答案】SKIPIF1<0【分析】對(duì)①:根據(jù)奇偶函數(shù)的定義可得SKIPIF1<0;對(duì)②:分類討論可得二次項(xiàng)系數(shù)小于零,且對(duì)稱軸為SKIPIF1<0,求出a的取值范圍;對(duì)③:結(jié)合②中所求的范圍驗(yàn)證即可.【詳解】對(duì)①:∵SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0不是奇函數(shù);若SKIPIF1<0是偶函數(shù),則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0;故若SKIPIF1<0是非奇非偶函數(shù),則SKIPIF1<0;對(duì)③:若SKIPIF1<0在SKIPIF1<0上有最大值,則有:當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,無最值,不合題意;當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0為二次函數(shù)且對(duì)稱軸為SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,故若SKIPIF1<0在SKIPIF1<0上有最大值,則SKIPIF1<0;對(duì)②:若SKIPIF1<0,則SKIPIF1<0開口向下,且對(duì)稱軸為SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上既不是增函數(shù)也不是減函數(shù);綜上所述:實(shí)數(shù)a的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.題型五二次函數(shù)恒成立問題策略方法由不等式恒成立求參數(shù)取值范圍的思路及關(guān)鍵(1)一般有兩個(gè)解題思路:一是分離參數(shù);二是不分離參數(shù).(2)兩種思路都是將問題歸結(jié)為求函數(shù)的最值,至于用哪種方法,關(guān)鍵是看參數(shù)是否已分離.這兩個(gè)思路的依據(jù)是:a≥f(x)恒成立?a≥f(x)max,a≤f(x)恒成立?a≤f(x)min.2.a(chǎn)x2+bx+c<0(a>0)在區(qū)間[m,n]上恒成立的條件.設(shè)f(x)=ax2+bx+c,則eq\b\lc\{\rc\(\a\vs4\al\co1(fm<0,,fn<0.))【典例1】設(shè)函數(shù)SKIPIF1<0,若對(duì)于SKIPIF1<0,SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為___________.【答案】SKIPIF1<0【分析】整理可得SKIPIF1<0在SKIPIF1<0上恒成立,根據(jù)x的范圍,可求得SKIPIF1<0的范圍,分析即可得答案.【詳解】由題意,SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論