2023屆重慶綦江中學高三數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
2023屆重慶綦江中學高三數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
2023屆重慶綦江中學高三數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
2023屆重慶綦江中學高三數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
2023屆重慶綦江中學高三數學第一學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.己知全集為實數集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)2.已知,,若,則實數的值是()A.-1 B.7 C.1 D.1或73.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則4.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.5.已知,則()A. B. C. D.6.已知與函數和都相切,則不等式組所確定的平面區(qū)域在內的面積為()A. B. C. D.7.在區(qū)間上隨機取一個數,使得成立的概率為等差數列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.118.若函數,在區(qū)間上任取三個實數,,均存在以,,為邊長的三角形,則實數的取值范圍是()A. B. C. D.9.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.10.中國鐵路總公司相關負責人表示,到2018年底,全國鐵路營業(yè)里程達到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運營里程(單位:萬公里)的折線圖,以下結論不正確的是()A.每相鄰兩年相比較,2014年到2015年鐵路運營里程增加最顯著B.從2014年到2018年這5年,高鐵運營里程與年價正相關C.2018年高鐵運營里程比2014年高鐵運營里程增長80%以上D.從2014年到2018年這5年,高鐵運營里程數依次成等差數列11.如圖,圓是邊長為的等邊三角形的內切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.12.執(zhí)行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標系中,某等腰直角三角形的兩個頂點坐標分別為,函數的圖象經過該三角形的三個頂點,則的解析式為___________.14.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.15.若函數為奇函數,則_______.16.已知函數,若函數有6個零點,則實數的取值范圍是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.18.(12分)已知函數,其中.(Ⅰ)若,求函數的單調區(qū)間;(Ⅱ)設.若在上恒成立,求實數的最大值.19.(12分)設函數,.(1)求函數的極值;(2)對任意,都有,求實數a的取值范圍.20.(12分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.21.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.22.(10分)在平面直角坐標系xOy中,拋物線C:,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為().(1)求拋物線C的極坐標方程;(2)若拋物線C與直線l交于A,B兩點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

求解一元二次不等式化簡A,求解對數不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

則,

∴.

故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數不等式,二次不等式的求法,是基礎題.2、C【解析】

根據平面向量數量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數量積的坐標運算,屬于基礎題.3、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.4、C【解析】

根據線面垂直的性質以及線面垂直的判定,根據勾股定理,得到之間的等量關系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設,,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當且僅當,時等號成立,所以.故選:C.【點睛】本題考查空間幾何體的線面位置關系及基本不等式的應用,考查空間想象能力以及數形結合思想,涉及線面垂直的判定和性質,屬中檔題.5、B【解析】

利用誘導公式以及同角三角函數基本關系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.6、B【解析】

根據直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數得,化簡得③.構造函數,,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據公共切線求參數,考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數形結合的數學思想方法,考查分析思考與解決問題的能力,屬于難題.7、D【解析】

由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數列的公差,利用條件,求得,從而求得,解不等式求得結果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數列的通項公式,屬于基礎題目.8、D【解析】

利用導數求得在區(qū)間上的最大值和最小,根據三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數,,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導數研究函數的最值,考查恒成立問題的求解,屬于中檔題.9、A【解析】

設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.10、D【解析】

由折線圖逐項分析即可求解【詳解】選項,顯然正確;對于,,選項正確;1.6,1.9,2.2,2.5,2.9不是等差數列,故錯.故選:D【點睛】本題考查統計的知識,考查數據處理能力和應用意識,是基礎題11、C【解析】

建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據三角形面積公式得到,可得到內切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數、不等式、三角函數等相結合的一類綜合問題.通過向量的運算,將問題轉化為解不等式或求函數值域,是解決這類問題的一般方法.12、B【解析】若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結束循環(huán),輸出,與題意輸出的矛盾;綜上選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

結合題意先畫出直角坐標系,點出所有可能組成等腰直角三角形的點,采用排除法最終可確定為點,再由函數性質進一步求解參數即可【詳解】等腰直角三角形的第三個頂點可能的位置如下圖中的點,其中點與已有的兩個頂點橫坐標重復,舍去;若為點則點與點的中間位置的點的縱坐標必然大于或小于,不可能為,因此點也舍去,只有點滿足題意.此時點為最大值點,所以,又,則,所以點,之間的圖像單調,將,代入的表達式有由知,因此.故答案為:【點睛】本題考查由三角函數圖像求解解析式,數形結合思想,屬于中檔題14、5【解析】

△PMF的周長最小,即求最小,過做拋物線準線的垂線,垂足為,轉化為求最小,數形結合即可求解.【詳解】如圖,F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準線方程為y=﹣2.過作準線的垂線,垂足為,則有,當且僅當三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應用,考查數形結合與數學轉化思想方法,屬于中檔題.15、-2【解析】

由是定義在上的奇函數,可知對任意的,都成立,代入函數式可求得的值.【詳解】由題意,的定義域為,,是奇函數,則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數性質的應用,考查學生的計算求解能力,屬于基礎題.16、【解析】

由題意首先研究函數的性質,然后結合函數的性質數形結合得到關于a的不等式,求解不等式即可確定實數a的取值范圍.【詳解】當時,函數在區(qū)間上單調遞增,很明顯,且存在唯一的實數滿足,當時,由對勾函數的性質可知函數在區(qū)間上單調遞減,在區(qū)間上單調遞增,結合復合函數的單調性可知函數在區(qū)間上單調遞減,在區(qū)間上單調遞增,且當時,,考查函數在區(qū)間上的性質,由二次函數的性質可知函數在區(qū)間上單調遞減,在區(qū)間上單調遞增,函數有6個零點,即方程有6個根,也就是有6個根,即與有6個不同交點,注意到函數關于直線對稱,則函數關于直線對稱,繪制函數的圖像如圖所示,觀察可得:,即.綜上可得,實數的取值范圍是.故答案為.【點睛】本題主要考查分段函數的應用,復合函數的單調性,數形結合的數學思想,等價轉化的數學思想等知識,意在考查學生的轉化能力和計算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】

(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數方程的標準形式代入曲線C的直角坐標方程,根據韋達定理以及參數t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標方程為y2=1,設點P的直角坐標為(x,y),因為P的極坐標為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點P的直角坐標為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因為△=1102﹣4×41×25=8000>0,故可設方程的兩根為t1,t2,則t1,t2為A,B對應的參數,且t1+t2,依題意,點M對應的參數為,所以|PM|=||.【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題.18、(Ⅰ)單調遞減區(qū)間為,單調遞增區(qū)間為;(Ⅱ).【解析】

(Ⅰ)求出函數的定義域以及導數,利用導數可求出該函數的單調遞增區(qū)間和單調遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時,構造函數,利用導數證明出在上恒成立;在時,經過分析得出,然后構造函數,利用導數證明出在上恒成立,由此得出,進而可得出實數的最大值.【詳解】(Ⅰ)函數的定義域為.當時,.令,解得(舍去),.當時,,所以,函數在上單調遞減;當時,,所以,函數在上單調遞增.因此,函數的單調遞減區(qū)間為,單調遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構造函數,,則,,,.又,在上恒成立.所以,函數在上單調遞增,當時,在上恒成立.(ii)若,構造函數,.,所以,函數在上單調遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當,即時,函數在上單調遞減,,不合題意,,即.此時構造函數,.,,,,恒成立,所以,函數在上單調遞增,恒成立.綜上,實數的最大值為【點睛】本題考查利用導數求解函數的單調區(qū)間,同時也考查了利用導數研究函數不等式恒成立問題,本題的難點在于不斷構造新函數來求解,考查推理能力與運算求解能力,屬于難題.19、(1)當時,無極值;當時,極小值為;(2).【解析】

(1)求導,對參數進行分類討論,即可容易求得函數的極值;(2)構造函數,兩次求導,根據函數單調性,由恒成立問題求參數范圍即可.【詳解】(1)依題,當時,,函數在上單調遞增,此時函數無極值;當時,令,得,令,得所以函數在上單調遞增,在上單調遞減.此時函數有極小值,且極小值為.綜上:當時,函數無極值;當時,函數有極小值,極小值為.(2)令易得且,令所以,因為,,從而,所以,在上單調遞增.又若,則所以在上單調遞增,從而,所以時滿足題意.若,所以,,在中,令,由(1)的單調性可知,有最小值,從而.所以所以,由零點存在性定理:,使且在上單調遞減,在上單調遞增.所以當時,.故當,不成立.綜上所述:的取值范圍為.【點睛】本題考查利用導數研究含參函數的極值,涉及由恒成立問題求參數范圍的問題,屬壓軸題.20、(1)(2)或.【解析】

(1)圓的方程已知,根據條件列出方程組,解方程即得;(2)設,,顯然直線l的斜率存在,方法一:設直線l的方程為:,將直線方程和橢圓方程聯立,消去,可得,同理直線方程和圓方程聯立,可得,再由可解得,即得;方法二:設直線l的方程為:,與橢圓方程聯立,可得,將其與圓方程聯立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準線與圓C:相切.解得,,橢圓方程為:.(2)法1:設,,顯然直線l的斜率存在,設直線l的方程為:.直線方程和橢圓方程聯立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯立,由方程組消去y得,由,解得.又,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論