版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
專題08數(shù)列求和(奇偶項討論求和)(典型題型歸類訓(xùn)練)目錄TOC\o"1-2"\h\u一、必備秘籍 1二、典型題型 2題型一:求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0 2題型二:求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0 5題型三:通項含有SKIPIF1<0的類型;例如:SKIPIF1<0 10題型四:已知條件明確的奇偶項或含有三角函數(shù)問題 13三、專題08數(shù)列求和(奇偶項討論求和)專項訓(xùn)練 17一、必備秘籍有關(guān)數(shù)列奇偶項的問題是高考中經(jīng)常涉及的問題,解決此類問題的難點在于搞清數(shù)列奇數(shù)項和偶數(shù)項的首項、項數(shù)、公差(比)等.本專題主要研究與數(shù)列奇偶項有關(guān)的問題,并在解決問題中讓學(xué)生感悟分類討論等思想在解題中的有效運用.因此,在數(shù)列綜合問題中有許多可通過構(gòu)造函數(shù)來解決.類型一:通項公式分奇、偶項有不同表達(dá)式;例如:SKIPIF1<0角度1:求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0角度2:求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0類型二:通項含有SKIPIF1<0的類型;例如:SKIPIF1<0類型三:已知條件明確的奇偶項或含有三角函數(shù)問題二、典型題型題型一:求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0例題1.(2023秋·安徽·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項和,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)設(shè)SKIPIF1<0的公差為d.∵SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0.∴SKIPIF1<0.(2)當(dāng)n為奇數(shù)時,SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0.∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,①則SKIPIF1<0,②SKIPIF1<0,得SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0.故SKIPIF1<0.例題2.(2023秋·山東德州·高三德州市第一中學(xué)??茧A段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)∵SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,兩式相除得:SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,綜上所述,SKIPIF1<0的通項公式為:SKIPIF1<0;(2)由題設(shè)及(1)可知:SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0例題3.(2023秋·湖南衡陽·高三衡陽市八中??茧A段練習(xí))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)依題意,設(shè)數(shù)列SKIPIF1<0的公差為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.(2)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.例題4.(2023秋·安徽·高三安徽省宿松中學(xué)校聯(lián)考開學(xué)考試)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)記SKIPIF1<0,求證:數(shù)列SKIPIF1<0是等比數(shù)列;(2)若SKIPIF1<0,求SKIPIF1<0.【答案】(1)證明見解析(2)SKIPIF1<0【詳解】(1)因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項為5,公比為2的等比數(shù)列;(2)由(1)知:SKIPIF1<0,故SKIPIF1<0,其中SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,故SKIPIF1<0.題型二:求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0例題1.(2023·浙江紹興·統(tǒng)考模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)根據(jù)題意可知SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,即SKIPIF1<0,所以當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0;當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,即SKIPIF1<0,所以當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0.綜上,SKIPIF1<0,SKIPIF1<0.(2)由(1)可知當(dāng)SKIPIF1<0為奇數(shù)時,若SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時,若SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,且SKIPIF1<0為奇數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,且SKIPIF1<0為偶數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.綜上,SKIPIF1<0例題2.(2023·全國·高三專題練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,且對任意的SKIPIF1<0,都有SKIPIF1<0.(1)證明:SKIPIF1<0是等比數(shù)列,并求出SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)證明見解析,SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)證明:因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則有SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是以4為首項,2為公比的等比數(shù)列.所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是以1為首項,1為公差的等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0.(2)由(1)知SKIPIF1<0SKIPIF1<0,則SKIPIF1<0的奇數(shù)項為以SKIPIF1<0為首項,SKIPIF1<0為公比的等比數(shù)列;偶數(shù)項是以SKIPIF1<0,SKIPIF1<0為公差的等差數(shù)列.所以當(dāng)SKIPIF1<0為偶數(shù),且SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù),且SKIPIF1<0時,SKIPIF1<0為偶數(shù),SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0時,SKIPIF1<0,滿足.所以,當(dāng)SKIPIF1<0為奇數(shù),且SKIPIF1<0時,有SKIPIF1<0.綜上,SKIPIF1<0.例題3.(2023·全國·高三專題練習(xí))數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項積為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0和SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0;SKIPIF1<0(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是以1為首項,2為公比的等比數(shù)列,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時也符合,所以SKIPIF1<0.(2)由(1)知,SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0即SKIPIF1<0為偶數(shù)時,SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,所以SKIPIF1<0.例題4.(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求k的值和SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0【詳解】(1)解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0.(2)由(1)知,SKIPIF1<0當(dāng)n為偶數(shù)時,設(shè)n=2k,可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0;當(dāng)n為奇數(shù)時,設(shè)n=2k-1,可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.綜上所述,SKIPIF1<0.題型三:通項含有SKIPIF1<0的類型;例如:SKIPIF1<0例題1.(2023秋·天津和平·高三天津二十中??茧A段練習(xí))數(shù)列SKIPIF1<0是等差數(shù)列,數(shù)列SKIPIF1<0是等比數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的公差以及數(shù)列SKIPIF1<0的公比;(2)求數(shù)列SKIPIF1<0前SKIPIF1<0項的和.(3)求數(shù)列SKIPIF1<0前SKIPIF1<0項的和.【答案】(1)數(shù)列SKIPIF1<0的公差為1,數(shù)列SKIPIF1<0的公比為2(2)SKIPIF1<0(3)SKIPIF1<0【詳解】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為d,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由題意可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以數(shù)列SKIPIF1<0的公差為1,數(shù)列SKIPIF1<0的公比為2.(2)由(1)可得:SKIPIF1<0,則SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0前SKIPIF1<0項的和為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.(3)由(2)可知SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù),則SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0前SKIPIF1<0項的和為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.例題2.(2023秋·廣東珠?!じ呷楹J械诙袑W(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0是常數(shù)).(1)若SKIPIF1<0,證明SKIPIF1<0是等比數(shù)列;(2)若SKIPIF1<0,且SKIPIF1<0是等比數(shù)列,求SKIPIF1<0的值以及數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)證明見解析(2)SKIPIF1<0,SKIPIF1<0【詳解】(1)依題意,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列.(2)依題意,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0是等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0,故解得SKIPIF1<0,則SKIPIF1<0,所以等比數(shù)列SKIPIF1<0的公比SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以,當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,綜上所述,SKIPIF1<0.例題3.(2023·河南開封·??寄M預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因為SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0是常數(shù)數(shù)列,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.(2)因為SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;綜上可得SKIPIF1<0.例題4.(2023·山東·山東師范大學(xué)附中校考模擬預(yù)測)已知SKIPIF1<0是各項均為正數(shù)的數(shù)列,SKIPIF1<0為SKIPIF1<0的前n項和,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求SKIPIF1<0的通項公式;(2)已知SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,得SKIPIF1<0,①當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,得SKIPIF1<0(SKIPIF1<0舍去),當(dāng)SKIPIF1<0時,SKIPIF1<0,②①-②得,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是首項為2,公差為1的等差數(shù)列,∴SKIPIF1<0,故SKIPIF1<0;(2)由(1)知SKIPIF1<0,當(dāng)SKIPIF1<0是奇數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0是偶數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0,綜上SKIPIF1<0.題型四:已知條件明確的奇偶項或含有三角函數(shù)問題例題1.(2023·吉林長春·東北師大附中??家荒#┮阎黜椌鶠檎龜?shù)的數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若SKIPIF1<0,記數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因為SKIPIF1<0各項為正數(shù),SKIPIF1<0,所以上式兩邊同時除以SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0,SKIPIF1<0的等比數(shù)列,故SKIPIF1<0.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,根據(jù)三角函數(shù)周期性知SKIPIF1<0的周期為4,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0例題2.(2023春·重慶九龍坡·高三重慶市育才中學(xué)??奸_學(xué)考試)設(shè)SKIPIF1<0為正數(shù)數(shù)列SKIPIF1<0的前SKIPIF1<0項和,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前99項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,SKIPIF1<0,兩式相減SKIPIF1<0,化簡得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0為等差數(shù)列,在SKIPIF1<0中令SKIPIF1<0得SKIPIF1<0,因此數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0;(2)由SKIPIF1<0的周期為3,SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0.例題3.(2023·全國·高二專題練習(xí))已知SKIPIF1<0為等差數(shù)列SKIPIF1<0的前n項和,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)若SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)設(shè)數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0(2)由SKIPIF1<0,可得SKIPIF1<0,數(shù)列的最小正周期SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0例題4.(2023·全國·高二專題練習(xí))已知正項數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,兩式子作差可得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,可得數(shù)列SKIPIF1<0為公差為2的等差數(shù)列,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以,數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以,數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.例題5.(2023春·廣東佛山·高二佛山市第四中學(xué)??茧A段練習(xí))已知在數(shù)列SKIPIF1<0中,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由題意得SKIPIF1<0,即數(shù)列SKIPIF1<0為常數(shù)列,因為SKIPIF1<0,所以SKIPIF1<0.(2)由(1)可得SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0三、專題08數(shù)列求和(奇偶項討論求和)專項訓(xùn)練一、單選題1.(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0(
)A.1012 B.SKIPIF1<0 C.2023 D.SKIPIF1<0【答案】D【詳解】∵SKIPIF1<0,故SKIPIF1<0SKIPIF1<0故SKIPIF1<0SKIPIF1<0.故選:D.2.(2023秋·廣東深圳·高二統(tǒng)考期末)若數(shù)列SKIPIF1<0的通項公式SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:C3.(2023·全國·高二專題練習(xí))已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則SKIPIF1<0(
)A.0 B.50 C.100 D.2525【答案】B【詳解】法一:由于SKIPIF1<0①,則當(dāng)SKIPIF1<0時,SKIPIF1<0②,①-②,得SKIPIF1<0,即SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0.又SKIPIF1<0滿足SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0.法二:由于SKIPIF1<0①,則當(dāng)SKIPIF1<0時,SKIPIF1<0②,①-②,得SKIPIF1<0,即SKIPIF1<0,又易知SKIPIF1<0,所以數(shù)列SKIPIF1<0為常數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0.故選:B.4.(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則SKIPIF1<0(
)A.351 B.353 C.531 D.533【答案】B【詳解】依題意,SKIPIF1<0,顯然,當(dāng)n為奇數(shù)時有SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,令SKIPIF1<0,故SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項為1,公差為3的等差數(shù)列,故SKIPIF1<0;當(dāng)n為偶數(shù)時有SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,于是,SKIPIF1<0SKIPIF1<0SKIPIF1<0,故選:B.5.(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0為數(shù)列的前n項和,SKIPIF1<0(
)A.1008 B.1009 C.1010 D.1011【答案】D【詳解】解:因為當(dāng)SKIPIF1<0為奇數(shù)時SKIPIF1<0,SKIPIF1<0為偶數(shù)時SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;故選:D6.(2023春·陜西西安·高二西安中學(xué)??计谥校┮阎獢?shù)列SKIPIF1<0的通項公式是SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.3027 D.3028【答案】A【詳解】解:由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:A.二、填空題7.(2023秋·遼寧·高三校聯(lián)考階段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0則數(shù)列SKIPIF1<0的前60項和為.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,
得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0為各項均為1的常數(shù)數(shù)列,所以SKIPIF1<0,又由SKIPIF1<0
得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以數(shù)列SKIPIF1<0的前60項和為SKIPIF1<0.故答案為:SKIPIF1<0.8.(2023春·江西上饒·高二上饒市第一中學(xué)校考階段練習(xí))已知數(shù)列SKIPIF1<0的通項公式SKIPIF1<0,其前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0.【答案】-1012【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故答案為:-1012.9.(2023·全國·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0,其前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】由題意,SKIPIF1<0,在數(shù)列SKIPIF1<0中,SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故答案為:-2023.10.(2023秋·遼寧沈陽·高三沈陽二中??奸_學(xué)考試)設(shè)數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0,其前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0.【答案】100【詳解】當(dāng)SKIPIF1<0或SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0.故答案為:100.三、解答題11.(2023春·遼寧朝陽·高二建平縣實驗中學(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的值.【答案】36【詳解】法一:由SKIPIF1<0可得:當(dāng)n為奇數(shù)時,SKIPIF1<0,SKIPIF1<0,兩式相減可得:SKIPIF1<0,所以SKIPIF1<0.當(dāng)n為偶數(shù)時,SKIPIF1<0,SKIPIF1<0,兩式相加可得:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.法二:因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)司機勞務(wù)外包協(xié)議范例版B版
- 專利與商業(yè)秘密:2024版雙邊保密合作合同版B版
- 上海專業(yè)精裝修工程合同(2024年版)版B版
- 專業(yè)物流委托運輸協(xié)議模板(2024年新版)版B版
- 個人住宅裝修設(shè)計合作合同(2024年版)版B版
- 市第五醫(yī)院醫(yī)學(xué)教育培訓(xùn)管理辦法
- 2024年銀行安防系統(tǒng)改造合同3篇
- 生日星的輝煌軌跡
- 理賠服務(wù)新高度
- 科學(xué)實驗的探索之旅
- 八年級散文閱讀專題訓(xùn)練-八年級語文上冊知識梳理與能力訓(xùn)練
- 2024年杭州市中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 經(jīng)濟職業(yè)技術(shù)學(xué)院教務(wù)教學(xué)管理制度匯編(2024年)
- 2024-2025學(xué)年人教版八年級數(shù)學(xué)上冊期末測試模擬試題(含答案)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之15:“6策劃-6.4創(chuàng)新組合”(雷澤佳編制-2025B0)
- 小學(xué)生科普人工智能
- 車輛使用授權(quán)書
- 常用函數(shù)圖像(1)
- 說明書ZWY-150(120)-45L煤礦用挖掘式裝載機
- 《鍋爐及鍋爐房設(shè)備》課程設(shè)計北京市某燃煤廠區(qū)蒸汽鍋爐房設(shè)計
- 單位局域網(wǎng)的建設(shè)—畢業(yè)論文
評論
0/150
提交評論