2024-2025學(xué)年河南省九師聯(lián)盟商開大聯(lián)考高三練習(xí)三(全國卷I)數(shù)學(xué)試題含解析_第1頁
2024-2025學(xué)年河南省九師聯(lián)盟商開大聯(lián)考高三練習(xí)三(全國卷I)數(shù)學(xué)試題含解析_第2頁
2024-2025學(xué)年河南省九師聯(lián)盟商開大聯(lián)考高三練習(xí)三(全國卷I)數(shù)學(xué)試題含解析_第3頁
2024-2025學(xué)年河南省九師聯(lián)盟商開大聯(lián)考高三練習(xí)三(全國卷I)數(shù)學(xué)試題含解析_第4頁
2024-2025學(xué)年河南省九師聯(lián)盟商開大聯(lián)考高三練習(xí)三(全國卷I)數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年河南省九師聯(lián)盟商開大聯(lián)考高三練習(xí)三(全國卷I)數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點為,則不可能為()A. B. C. D.2.設(shè)復(fù)數(shù)z=,則|z|=()A. B. C. D.3.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.4.設(shè)m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,5.如果直線與圓相交,則點與圓C的位置關(guān)系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內(nèi) D.上述三種情況都有可能6.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.7.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.8.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.9.設(shè)一個正三棱柱,每條棱長都相等,一只螞蟻從上底面的某頂點出發(fā),每次只沿著棱爬行并爬到另一個頂點,算一次爬行,若它選擇三個方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.10.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.11.已知全集,集合,則=()A. B.C. D.12.已知定義在上的偶函數(shù),當(dāng)時,,設(shè),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩人下棋,兩人下成和棋的概率是,乙獲勝的概率是,則乙不輸?shù)母怕适莀____.14.某種牛肉干每袋的質(zhì)量服從正態(tài)分布,質(zhì)檢部門的檢測數(shù)據(jù)顯示:該正態(tài)分布為,.某旅游團(tuán)游客共購買這種牛肉干100袋,估計其中質(zhì)量低于的袋數(shù)大約是_____袋.15.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.16.三所學(xué)校舉行高三聯(lián)考,三所學(xué)校參加聯(lián)考的人數(shù)分別為160,240,400,為調(diào)查聯(lián)考數(shù)學(xué)學(xué)科的成績,現(xiàn)采用分層抽樣的方法在這三所學(xué)校中抽取樣本,若在學(xué)校抽取的數(shù)學(xué)成績的份數(shù)為30,則抽取的樣本容量為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點,使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.18.(12分)若不等式在時恒成立,則的取值范圍是__________.19.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.20.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).21.(12分)如圖,在三棱錐中,平面平面,,.點,,分別為線段,,的中點,點是線段的中點.(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.22.(10分)以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線和直線的極坐標(biāo)方程分別是()和(),其中().(1)寫出曲線的直角坐標(biāo)方程;(2)設(shè)直線和直線分別與曲線交于除極點的另外點,,求的面積最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

依題意,設(shè),由,得,再一一驗證.【詳解】設(shè),因為,所以,經(jīng)驗證不滿足,故選:D.本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.2.D【解析】

先用復(fù)數(shù)的除法運算將復(fù)數(shù)化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.本題考查復(fù)數(shù)的基本概念和基本運算,屬于基礎(chǔ)題.3.C【解析】

畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.4.B【解析】

根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【詳解】對于A選項,當(dāng),,時,由于不在平面內(nèi),故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當(dāng),時,可能含于平面,故無法得出.對于D選項,當(dāng),時,無法得出.綜上所述,的一個充分條件是“,”故選:B本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.5.B【解析】

根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關(guān)系是點在圓外.故選:本題主要考查直線與圓相交的性質(zhì),考查點到直線距離公式的應(yīng)用,屬于中檔題.6.B【解析】

求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.7.C【解析】

可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因為,即,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.8.A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A本題以正五角星為載體,考查平面向量的概念及運算法則等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.9.D【解析】

由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,可得,根據(jù)求數(shù)列的通項知識可得選項.【詳解】由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來,其概率是,兩種事件又是互斥的,∴,即,∴,∴數(shù)列是以為公比的等比數(shù)列,而,所以,∴當(dāng)時,,故選:D.本題考查幾何體中的概率問題,關(guān)鍵在于運用遞推的知識,得出相鄰的項的關(guān)系,這是常用的方法,屬于難度題.10.A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.11.D【解析】

先計算集合,再計算,最后計算.【詳解】解:,,.故選:.本題主要考查了集合的交,補混合運算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.12.B【解析】

根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時,,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時,,則,令則,當(dāng)時,,則在時單調(diào)遞增,因為,所以,即,則在時單調(diào)遞增,而,所以,綜上可知,即,故選:B.本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】乙不輸?shù)母怕蕿?,?14.1【解析】

根據(jù)正態(tài)分布對稱性,求得質(zhì)量低于的袋數(shù)的估計值.【詳解】由于,所以,所以袋牛肉干中,質(zhì)量低于的袋數(shù)大約是袋.故答案為:本小題主要考查正態(tài)分布對稱性的應(yīng)用,屬于基礎(chǔ)題.15.0或6【解析】

計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計算能力和轉(zhuǎn)化能力。16.【解析】

某層抽取的人數(shù)等于該層的總?cè)藬?shù)乘以抽樣比.【詳解】設(shè)抽取的樣本容量為x,由已知,,解得.故答案為:本題考查隨機(jī)抽樣中的分層抽樣,考查學(xué)生基本的運算能力,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點,,使直線與平面所成的角正弦值為.【解析】

(Ⅰ)取中點,連結(jié)、,推導(dǎo)出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點,連結(jié),,推導(dǎo)出平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值;(Ⅲ)假設(shè)在線段上是存在一點,使直線與平面所成的角正弦值為,設(shè).利用向量法能求出結(jié)果.【詳解】(Ⅰ)證明:取中點,連結(jié)、,是邊長為2的等邊三角形,,,,點為的中點,,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點,連結(jié),,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點,平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,,1,,,0,,,1,,,0,,,,,,0,,,,,設(shè)平面的法向量,,,則,取,得,,,設(shè)平面的法向量,,,則,取,得,設(shè)二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設(shè)在線段上是存在一點,使直線與平面所成的角正弦值為,設(shè).則,,,,,,平面的法向量,,解得,線段上是存在一點,,使直線與平面所成的角正弦值為.本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.18.【解析】

原不等式等價于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因為在時恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.本題考查含參數(shù)的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉(zhuǎn)化為不含參數(shù)的新函數(shù)的最值問題,本題屬于基礎(chǔ)題.19.(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調(diào)遞減,因為,所以在上增,在單調(diào)遞增.,,因為,所以在區(qū)間上的值域為.點睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,曲線在某個點處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過程中,需要對公式的正確使用.20.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解析】

(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標(biāo)原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫出答案即可.【詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標(biāo)原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,

建立空間直角坐標(biāo)系E-xyz,設(shè)AB=BD=DC=AD=2,

則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論