版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.22.關(guān)于圓周率π,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請全校名同學每人隨機寫下一個都小于的正實數(shù)對;再統(tǒng)計兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)估計的值,那么可以估計的值約為()A. B. C. D.3.曲線在點處的切線方程為,則()A. B. C.4 D.84.已知正方體的棱長為2,點在線段上,且,平面經(jīng)過點,則正方體被平面截得的截面面積為()A. B. C. D.5.已知函,,則的最小值為()A. B.1 C.0 D.6.將函數(shù)圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數(shù)圖象的一個對稱中心為()A. B. C. D.7.若,則下列關(guān)系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.48.已知圓關(guān)于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.9.是邊長為的等邊三角形,、分別為、的中點,沿把折起,使點翻折到點的位置,連接、,當四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.10.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.1211.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.12.已知中,,則()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)滿足,且當時,又函數(shù),則函數(shù)在上的零點個數(shù)為___________.14.若復(fù)數(shù)滿足,其中是虛數(shù)單位,是的共軛復(fù)數(shù),則________.15.過且斜率為的直線交拋物線于兩點,為的焦點若的面積等于的面積的2倍,則的值為___________.16.已知兩個單位向量滿足,則向量與的夾角為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,,,恰為等比數(shù)列的前3項.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.18.(12分)已知數(shù)列,其前項和為,滿足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.19.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.20.(12分)在數(shù)列中,,(1)求數(shù)列的通項公式;(2)若存在,使得成立,求實數(shù)的最小值21.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.22.(10分)設(shè)函數(shù),是函數(shù)的導數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.2.D【解析】
由試驗結(jié)果知對0~1之間的均勻隨機數(shù),滿足,面積為1,再計算構(gòu)成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據(jù)題意知,名同學取對都小于的正實數(shù)對,即,對應(yīng)區(qū)域為邊長為的正方形,其面積為,若兩個正實數(shù)能與構(gòu)成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應(yīng)用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關(guān)的幾何概型時,關(guān)鍵是弄清某事件對應(yīng)的面積,必要時可根據(jù)題意構(gòu)造兩個變量,把變量看成點的坐標,找到試驗全部結(jié)果構(gòu)成的平面圖形,以便求解.3.B【解析】
求函數(shù)導數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數(shù)的幾何意義,切線方程,屬于中檔題.4.B【解析】
先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個平面,因為平面平面,所以,同理,所以四邊形是平行四邊形.即正方體被平面截的截面.因為,所以,即所以由余弦定理得:所以所以四邊形故選:B【點睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運算求解的能力,屬于中檔題.5.B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.6.D【解析】
先化簡函數(shù)解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,可得所求函數(shù)的解析式為,再由正弦函數(shù)的對稱性得解.【詳解】,
將函數(shù)圖象上各點的橫坐標伸長到原來的3倍,所得函數(shù)的解析式為,
再向右平移個單位長度,所得函數(shù)的解析式為,,可得函數(shù)圖象的一個對稱中心為,故選D.【點睛】三角函數(shù)的圖象與性質(zhì)是高考考查的熱點之一,經(jīng)常考查定義域、值域、周期性、對稱性、奇偶性、單調(diào)性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現(xiàn),在復(fù)習時要注意基礎(chǔ)知識的理解與落實.三角函數(shù)的性質(zhì)由函數(shù)的解析式確定,在解答三角函數(shù)性質(zhì)的綜合試題時要抓住函數(shù)解析式這個關(guān)鍵,在函數(shù)解析式較為復(fù)雜時要注意使用三角恒等變換公式把函數(shù)解析式化為一個角的一個三角函數(shù)形式,然后利用正弦(余弦)函數(shù)的性質(zhì)求解.7.D【解析】
a,b可看成是與和交點的橫坐標,畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數(shù)圖象比較大小,考查學生數(shù)形結(jié)合的思想,是一道中檔題.8.C【解析】
將圓,化為標準方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據(jù)求解.【詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關(guān)于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.9.D【解析】
首先由題意得,當梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點,交于點,連接,點必在上,、分別為、的中點,則必有,,即為直角三角形.對于等腰梯形,如圖:因為是等邊三角形,、、分別為、、的中點,必有,所以點為等腰梯形的外接圓圓心,即點與點重合,如圖,,所以四棱錐底面的高為,.故選:D.【點睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點,考查了學生空間想象能力和分析能力,是一道難度較大的題目.10.B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B11.D【解析】
直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點睛】本題考查了根據(jù)幾何概型求面積,意在考查學生的計算能力和應(yīng)用能力.12.C【解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
判斷函數(shù)為偶函數(shù),周期為2,判斷為偶函數(shù),計算,,畫出函數(shù)圖像,根據(jù)圖像到答案.【詳解】知,函數(shù)為偶函數(shù),,函數(shù)關(guān)于對稱。,故函數(shù)為周期為2的周期函數(shù),且。為偶函數(shù),,,當時,,,函數(shù)先增后減。當時,,,函數(shù)先增后減。在同一坐標系下作出兩函數(shù)在上的圖像,發(fā)現(xiàn)在內(nèi)圖像共有1個公共點,則函數(shù)在上的零點個數(shù)為1.故答案為:.【點睛】本題考查了函數(shù)零點問題,確定函數(shù)的奇偶性,對稱性,周期性,畫出函數(shù)圖像是解題的關(guān)鍵.14.【解析】
設(shè),代入已知條件進行化簡,根據(jù)復(fù)數(shù)相等的條件,求得的值.【詳解】設(shè),由,得,所以,所以.故答案為:【點睛】本小題主要考查共軛復(fù)數(shù),考查復(fù)數(shù)相等的條件,屬于基礎(chǔ)題.15.2【解析】
聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點睛】此題考查了拋物線的性質(zhì),屬于中檔題.16.【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(2),(2),的最大整數(shù)是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數(shù)列,所以,化簡計算得,,從而得到數(shù)列的通項公式,再計算出,,,從而可求出數(shù)列的通項公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項和,再寫出其前()項和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當時,,即當時,①②①-②得,整理得,又因為各項均為正數(shù)的數(shù)列.故是從第二項的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項,故,解得.又,故,因為也成立.故是以為首項,2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項,故是以為首項,公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因為的最小值為,所以,所以的最大整數(shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點睛】此題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.18.(1)見解析(2)(3)見解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解析:(1)證明:若,則當(),所以,即,所以,又由,,得,,即,所以,故數(shù)列是等比數(shù)列.(2)若是等比數(shù)列,設(shè)其公比為(),當時,,即,得,①當時,,即,得,②當時,,即,得,③②①,得,③②,得,解得.代入①式,得.此時(),所以,是公比為1的等比數(shù)列,故.(3)證明:若,由,得,又,解得.由,,,,代入得,所以,,成等差數(shù)列,由,得,兩式相減得:即所以相減得:所以所以,因為,所以,即數(shù)列是等差數(shù)列.19.(1);(2).【解析】
(1)利用余弦定理得出關(guān)于的二次方程,結(jié)合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用二倍角的正切公式可求出的值.【詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因為,所以,從而,所以.【點睛】本題考查利用余弦定理解三角形,同時也考查了兩角和的余弦公式、同角三角函數(shù)的基本關(guān)系以及二倍角公式求值,考查計算能力,屬于中等題.20.(1);(2)【解析】
(1)由得,兩式相減可得是從第二項開始的等比數(shù)列,由此即可求出答案;(2),分類討論,當時,,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數(shù)列,∵∴,則,;(2),當時,;當時,設(shè)遞增,,所以實數(shù)的最小值.【點睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.21.(1)1;(2)證明見解析.【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《簡·愛》讀書筆記500字10篇
- 2021員工個人工作總結(jié)5篇
- 在企業(yè)的實習報告模板五篇
- 敬老院志愿活動個人總結(jié)五篇
- 慶祝中國人民警察節(jié)心得作文
- 電視臺實習報告模板集合10篇
- 2024年新型企業(yè)食堂租賃及運營合作協(xié)議書3篇
- 小學語文教師工作評價
- “兩個結(jié)合”視域下課程思政融入通識課的路徑探索
- 電梯維修工培訓資料
- 2024年資格考試-高校教師崗前培訓考試近5年真題集錦(頻考類試題)帶答案
- 新聞宣傳報道先進單位(集體)申報材料
- 指標權(quán)重優(yōu)化研究
- Unit1-3(單元測試)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 浙江名校新2025屆高一上數(shù)學期末學業(yè)水平測試試題含解析
- 【人教版】《勞動教育》五上 勞動項目三《制作扇子》 課件
- 《邏輯的力量-采用合理的論證方法》教學設(shè)計 2023-2024學年統(tǒng)編版高中語文選擇性必修上冊
- 中高層管理人員薪酬激勵制度
- 工程估價譚大璐課程設(shè)計
- 2024年浙江溫州中學保送生自主招生語文卷試題(含答案詳解)
- 2024年浙江省杭州市余杭區(qū)事業(yè)單位招考高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
評論
0/150
提交評論