版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
浙江省臺(tái)州市聯(lián)誼五校2025屆高三備考第二次模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線:的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),其中點(diǎn)在第一象限,若弦的長(zhǎng)為,則()A.2或 B.3或 C.4或 D.5或2.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無(wú)數(shù)條直線與l相交3.設(shè)為定義在上的奇函數(shù),當(dāng)時(shí),(為常數(shù)),則不等式的解集為()A. B. C. D.4.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.295.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對(duì)今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽(yáng)太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長(zhǎng)為,陰陽(yáng)太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.6.函數(shù)的圖象大致為()A. B.C. D.7.若,,則的值為()A. B. C. D.8.已知函數(shù)的值域?yàn)椋瘮?shù),則的圖象的對(duì)稱(chēng)中心為()A. B.C. D.9.如圖所示的程序框圖,當(dāng)其運(yùn)行結(jié)果為31時(shí),則圖中判斷框①處應(yīng)填入的是()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.11.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.12.設(shè)過(guò)定點(diǎn)的直線與橢圓:交于不同的兩點(diǎn),,若原點(diǎn)在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為拋物線的焦點(diǎn),為上互相不重合的三點(diǎn),且、、成等差數(shù)列,若線段的垂直平分線與軸交于,則的坐標(biāo)為_(kāi)______.14.已知復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的實(shí)部為_(kāi)___________.15.已知函數(shù),若,則___________.16.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_(kāi).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標(biāo)方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)已知點(diǎn),直線與圓相交于、兩點(diǎn),求的值.18.(12分)在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.19.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點(diǎn).(1)求證:直線MN⊥平面ACB1;(2)求點(diǎn)C1到平面B1MC的距離.20.(12分)已知橢圓的離心率為,且過(guò)點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過(guò)點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.21.(12分)[選修4-5:不等式選講]:已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)設(shè),,且的最小值為.若,求的最小值.22.(10分)已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線過(guò)點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
先根據(jù)弦長(zhǎng)求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.本題主要考查直線和拋物線的位置關(guān)系,弦長(zhǎng)問(wèn)題一般是利用弦長(zhǎng)公式來(lái)處理.出現(xiàn)了到焦點(diǎn)的距離時(shí),一般考慮拋物線的定義.2.D【解析】
通過(guò)條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯(cuò)誤,故選D.本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.3.D【解析】
由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時(shí),,且時(shí),單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,故有,解?故選:D.本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對(duì)函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.4.D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.5.B【解析】
由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.6.A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)?,所以是偶函?shù),排除C和D.當(dāng)時(shí),,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A本小題主要考查函數(shù)圖像的識(shí)別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.7.A【解析】
取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.8.B【解析】
由值域?yàn)榇_定的值,得,利用對(duì)稱(chēng)中心列方程求解即可【詳解】因?yàn)椋忠李}意知的值域?yàn)?,所以得,,所以,令,得,則的圖象的對(duì)稱(chēng)中心為.故選:B本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對(duì)稱(chēng)中心,重點(diǎn)考查值域的求解,易錯(cuò)點(diǎn)是對(duì)稱(chēng)中心縱坐標(biāo)錯(cuò)寫(xiě)為09.C【解析】
根據(jù)程序框圖的運(yùn)行,循環(huán)算出當(dāng)時(shí),結(jié)束運(yùn)行,總結(jié)分析即可得出答案.【詳解】由題可知,程序框圖的運(yùn)行結(jié)果為31,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.此時(shí)輸出.故選:C.本題考查根據(jù)程序框圖的循環(huán)結(jié)構(gòu),已知輸出結(jié)果求條件框,屬于基礎(chǔ)題.10.A【解析】
模擬執(zhí)行程序框圖,依次寫(xiě)出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過(guò)程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.該題考查的是有關(guān)程序框圖的問(wèn)題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.11.A【解析】
由題意可知直線過(guò)定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過(guò)定點(diǎn)即為的圓心,因?yàn)椋?,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過(guò)運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.12.D【解析】
設(shè)直線:,,,由原點(diǎn)在以為直徑的圓的外部,可得,聯(lián)立直線與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設(shè)直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識(shí)和圓錐曲線與直線交點(diǎn)問(wèn)題時(shí),通常用直線和圓錐曲線聯(lián)立方程組,通過(guò)韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.或【解析】
設(shè)出三點(diǎn)的坐標(biāo),結(jié)合等差數(shù)列的性質(zhì)、線段垂直平分線的性質(zhì)、拋物線的定義進(jìn)行求解即可.【詳解】拋物線的準(zhǔn)線方程為:,設(shè),由拋物線的定義可知:,,,因?yàn)?、、成等差?shù)列,所以有,所以,因?yàn)榫€段的垂直平分線與軸交于,所以,因此有,化簡(jiǎn)整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或本題考查了拋物線的定義的應(yīng)用,考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.14.【解析】
利用復(fù)數(shù)的概念與復(fù)數(shù)的除法運(yùn)算計(jì)算即可得到答案.【詳解】,所以復(fù)數(shù)的實(shí)部為2.故答案為:2本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.15.【解析】
根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因?yàn)楹瘮?shù),其定義域?yàn)椋云涠x域關(guān)于原點(diǎn)對(duì)稱(chēng),又,所以函數(shù)為奇函數(shù),因?yàn)椋?故答案為:本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運(yùn)算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、常考題型.16.【解析】
根據(jù)滿足約束條件,畫(huà)出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫(huà)出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn)此時(shí),目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1):,:;(2)【解析】
(1)消去參數(shù)求得直線的普通方程,將兩邊同乘以,化簡(jiǎn)求得圓的直角坐標(biāo)方程.(2)求得直線的標(biāo)準(zhǔn)參數(shù)方程,代入圓的直角坐標(biāo)方程,化簡(jiǎn)后寫(xiě)出韋達(dá)定理,根據(jù)直線參數(shù)的幾何意義,求得的值.【詳解】(1)消去參數(shù),得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標(biāo)方程為;(2)經(jīng)檢驗(yàn)點(diǎn)在直線上,可轉(zhuǎn)化為①,將①式代入圓的直角坐標(biāo)方程為得,化簡(jiǎn)得,設(shè)是方程的兩根,則,,∵,∴與同號(hào),由的幾何意義得.本小題主要考查參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用直線參數(shù)的幾何意義求解距離問(wèn)題,屬于中檔題.18.(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡(jiǎn)單題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問(wèn)題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.19.(1)證明見(jiàn)解析.(2)【解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點(diǎn),通過(guò)等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點(diǎn);∵M(jìn)是AB的中點(diǎn).所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點(diǎn),設(shè)C1到平面B1CM的距離為h,因?yàn)镸P,所以?MP,因?yàn)镃M,B1C;B1M,所以所以:CM?B1M.因?yàn)?,所以,解得所以點(diǎn),到平面的距離為本題主要考查面面垂直的證明以及點(diǎn)到平面的距離,一般證明面面垂直都用線面垂直轉(zhuǎn)化為面面垂直,而點(diǎn)到面的距離常用體積轉(zhuǎn)化來(lái)求,屬于中檔題20.(1)(2)點(diǎn)在以為直徑的圓上【解析】
(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),,則,,求出直線的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點(diǎn),,則,,直線的斜率為,直線的方程為:,令得,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,,,,又點(diǎn),在橢圓上,,,,點(diǎn)在以為直徑的圓上.本題主要考查了橢圓方程,考查了中點(diǎn)坐標(biāo)公式,以及平面向量的基本知識(shí),屬于中檔題.21.(1)(2)【解析】
(1)當(dāng)時(shí),,原不等式可化為,分類(lèi)討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當(dāng)時(shí),,原不等式可化為,①當(dāng)時(shí),不等式①可化為,解得,此時(shí);當(dāng)時(shí),不等式①可化為,解得,此時(shí);當(dāng)時(shí),不等式①可化為,解得,此時(shí),綜上,原不等式的解集為.(2)由題意得,,因?yàn)榈淖钚≈禐?,所?/p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024個(gè)人珠寶買(mǎi)賣(mài)合同范本
- 2024年度版權(quán)質(zhì)押合同:含版權(quán)內(nèi)容、質(zhì)押價(jià)值、質(zhì)權(quán)實(shí)現(xiàn)
- 旅游推廣合作合同實(shí)例
- 攝影棚居間服務(wù)合同樣本
- 房屋銷(xiāo)售合同模板手冊(cè)
- 樂(lè)團(tuán)合作合同范本大全
- 電子郵件服務(wù)租用協(xié)議
- 2024家教公司與兼職教師合作合同范本
- 企業(yè)房屋租賃合同范本
- 2024保密合同樣書(shū)范文
- 四川省食品生產(chǎn)企業(yè)食品安全員理論考試題庫(kù)(含答案)
- 機(jī)織服裝生產(chǎn)中的質(zhì)量控制體系建設(shè)考核試卷
- 病理學(xué)實(shí)驗(yàn)2024(臨床 口腔)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年廣西安全員C證考試題庫(kù)及答案
- 期末測(cè)試卷(試題)-2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 2024至2030年中國(guó)手機(jī)配件產(chǎn)業(yè)需求預(yù)測(cè)及發(fā)展趨勢(shì)前瞻報(bào)告
- 2024年小學(xué)閩教版全冊(cè)英語(yǔ)詞匯表
- 課題開(kāi)題匯報(bào)(省級(jí)課題)
- 清真食品安全管理制度
- 學(xué)校心理健康教育合作協(xié)議書(shū)
- 2024江蘇省沿海開(kāi)發(fā)集團(tuán)限公司招聘23人(高頻重點(diǎn)提升專(zhuān)題訓(xùn)練)共500題附帶答案詳解
評(píng)論
0/150
提交評(píng)論