版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東省陽谷縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側(cè)面展開圖的圓心角是()A.90°B.120°C.150°D.180°2.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點(diǎn)C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項(xiàng)是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD3.化簡÷的結(jié)果是()A. B. C. D.2(x+1)4.已知一個(gè)多邊形的內(nèi)角和是1080°,則這個(gè)多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形5.如圖1是某生活小區(qū)的音樂噴泉,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,其中一個(gè)噴水管噴水的最大高度為3m,此時(shí)距噴水管的水平距離為1m,在如圖2所示的坐標(biāo)系中,該噴水管水流噴出的高度(m)與水平距離(m)之間的函數(shù)關(guān)系式是()A. B.C. D.6.若一個(gè)凸多邊形的內(nèi)角和為720°,則這個(gè)多邊形的邊數(shù)為A.4 B.5 C.6 D.77.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點(diǎn),那么d的值可以?。ǎ〢.11; B.6; C.3; D.1.8.搶微信紅包成為節(jié)日期間人們最喜歡的活動(dòng)之一.對(duì)某單位50名員工在春節(jié)期間所搶的紅包金額進(jìn)行統(tǒng)計(jì),并繪制成了統(tǒng)計(jì)圖.根據(jù)如圖提供的信息,紅包金額的眾數(shù)和中位數(shù)分別是()A.20,20 B.30,20 C.30,30 D.20,309.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.10.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-611.如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是()A.2 B.3 C.4 D.512.如圖,四邊形ABCE內(nèi)接于⊙O,∠DCE=50°,則∠BOE=()A.100° B.50° C.70° D.130°二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)A的雙曲線y=(x>0)同時(shí)經(jīng)過點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為1,∠AOB=∠OBA=45°,則k的值為_______.14.已知某二次函數(shù)圖像的最高點(diǎn)是坐標(biāo)原點(diǎn),請(qǐng)寫出一個(gè)符合要求的函數(shù)解析式:_______.15.2017我市社會(huì)消費(fèi)品零售總額,科學(xué)記數(shù)法表示為_____.16.在正方形鐵皮上剪下一個(gè)扇形和一個(gè)半徑為1cm的圓形,使之恰好圍成一個(gè)圓錐,則圓錐的高為______.17.圖中圓心角∠AOB=30°,弦CA∥OB,延長CO與圓交于點(diǎn)D,則∠BOD=.18.從-5,-,-,-1,0,2,π這七個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),恰好為負(fù)整數(shù)的概率為______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.求證:△AEC≌△BED;若∠1=40°,求∠BDE的度數(shù).20.(6分)一個(gè)口袋中有1個(gè)大小相同的小球,球面上分別寫有數(shù)字1、2、1.從袋中隨機(jī)地摸出一個(gè)小球,記錄下數(shù)字后放回,再隨機(jī)地摸出一個(gè)小球.(1)請(qǐng)用樹形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;(2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.21.(6分)如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;如果網(wǎng)格中小正方形的邊長為1,求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長.22.(8分)如圖,在Rt△ABC的頂點(diǎn)A、B在x軸上,點(diǎn)C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點(diǎn)的拋物線解析式;(2)設(shè)拋物線的對(duì)稱軸l與BC邊交于點(diǎn)D,若P是對(duì)稱軸l上的點(diǎn),且滿足以P、C、D為頂點(diǎn)的三角形與△AOC相似,求P點(diǎn)的坐標(biāo);(3)在對(duì)稱軸l和拋物線上是否分別存在點(diǎn)M、N,使得以A、O、M、N為頂點(diǎn)的四邊形是平行四邊形,若存在請(qǐng)直接寫出點(diǎn)M、點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.圖1備用圖23.(8分)如圖,菱形中,分別是邊的中點(diǎn).求證:.24.(10分)頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).25.(10分)某校為了解本校學(xué)生每周參加課外輔導(dǎo)班的情況,隨機(jī)調(diào)査了部分學(xué)生一周內(nèi)參加課外輔導(dǎo)班的學(xué)科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計(jì)圖(其中A:0個(gè)學(xué)科,B:1個(gè)學(xué)科,C:2個(gè)學(xué)科,D:3個(gè)學(xué)科,E:4個(gè)學(xué)科或以上),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:請(qǐng)將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是個(gè)學(xué)科;若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個(gè)學(xué)科(含3個(gè)學(xué)科)以上的學(xué)生共有人.26.(12分)如圖,AB是⊙O直徑,BC⊥AB于點(diǎn)B,點(diǎn)C是射線BC上任意一點(diǎn),過點(diǎn)C作CD切⊙O于點(diǎn)D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.27.(12分)如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).求反比例函數(shù)的解析式;觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】試題分析:設(shè)正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設(shè)正圓錐的側(cè)面展開圖的圓心角是n°,則2r·πr180考點(diǎn):圓錐的計(jì)算.2、D【解析】試題分析:對(duì)于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據(jù)AAS判定定理可以判定△POC≌△POD;對(duì)于BOC=OD,根據(jù)SAS判定定理可以判定△POC≌△POD;對(duì)于C,∠OPC=∠OPD,根據(jù)ASA判定定理可以判定△POC≌△POD;,對(duì)于D,PC=PD,無法判定△POC≌△POD,故選D.考點(diǎn):角平分線的性質(zhì);全等三角形的判定.3、A【解析】
原式利用除法法則變形,約分即可得到結(jié)果.【詳解】原式=?(x﹣1)=.故選A.【點(diǎn)睛】本題考查了分式的乘除法,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.4、D【解析】
根據(jù)多邊形的內(nèi)角和=(n﹣2)?180°,列方程可求解.【詳解】設(shè)所求多邊形邊數(shù)為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點(diǎn)睛】本題考查根據(jù)多邊形的內(nèi)角和計(jì)算公式求多邊形的邊數(shù),解答時(shí)要會(huì)根據(jù)公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理.5、D【解析】
根據(jù)圖象可設(shè)二次函數(shù)的頂點(diǎn)式,再將點(diǎn)(0,0)代入即可.【詳解】解:根據(jù)圖象,設(shè)函數(shù)解析式為由圖象可知,頂點(diǎn)為(1,3)∴,將點(diǎn)(0,0)代入得解得∴故答案為:D.【點(diǎn)睛】本題考查了是根據(jù)實(shí)際拋物線形,求函數(shù)解析式,解題的關(guān)鍵是正確設(shè)出函數(shù)解析式.6、C【解析】
設(shè)這個(gè)多邊形的邊數(shù)為n,根據(jù)多邊形的內(nèi)角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設(shè)這個(gè)多邊形的邊數(shù)為n,由多邊形的內(nèi)角和是720°,根據(jù)多邊形的內(nèi)角和定理得(n-2)180°=720°.解得n=6.故選C.【點(diǎn)睛】本題主要考查多邊形的內(nèi)角和定理,熟練掌握多邊形的內(nèi)角和定理是解答本題的關(guān)鍵.7、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當(dāng)d>4+7或d<7-4時(shí),這兩個(gè)圓沒有公共點(diǎn),即d>11或d<3,∴上述四個(gè)數(shù)中,只有D選項(xiàng)中的1符合要求.故選D.點(diǎn)睛:兩圓沒有公共點(diǎn),存在兩種情況:(1)兩圓外離,此時(shí)圓心距>兩圓半徑的和;(1)兩圓內(nèi)含,此時(shí)圓心距<大圓半徑-小圓半徑.8、C【解析】
根據(jù)眾數(shù)和中位數(shù)的定義,出現(xiàn)次數(shù)最多的那個(gè)數(shù)就是眾數(shù),把一組數(shù)據(jù)按照大小順序排列,中間那個(gè)數(shù)或中間兩個(gè)數(shù)的平均數(shù)叫中位數(shù).【詳解】捐款30元的人數(shù)為20人,最多,則眾數(shù)為30,中間兩個(gè)數(shù)分別為30和30,則中位數(shù)是30,故選C.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖、眾數(shù)和中位數(shù),這是基礎(chǔ)知識(shí)要熟練掌握.9、D【解析】
先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點(diǎn)睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個(gè)角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.10、B【解析】
先根據(jù)多項(xiàng)式乘以多項(xiàng)式的法則,將(x-2)(x+3)展開,再根據(jù)兩個(gè)多項(xiàng)式相等的條件即可確定p、q的值.【詳解】解:∵(x-2)(x+3)=x2+x-1,
又∵(x-2)(x+3)=x2+px+q,
∴x2+px+q=x2+x-1,
∴p=1,q=-1.
故選:B.【點(diǎn)睛】本題主要考查多項(xiàng)式乘以多項(xiàng)式的法則及兩個(gè)多項(xiàng)式相等的條件.多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.兩個(gè)多項(xiàng)式相等時(shí),它們同類項(xiàng)的系數(shù)對(duì)應(yīng)相等.11、D【解析】
①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個(gè)角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質(zhì)和等腰三角形的性質(zhì)得:∠ACE=30°,最后由平行線的性質(zhì)可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計(jì)算OC=和OD的長,可得BD的長;③因?yàn)椤螧AC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對(duì)應(yīng)底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結(jié)論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個(gè),故選D.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì)、三角形面積和平行四邊形面積的計(jì)算;熟練掌握平行四邊形的性質(zhì),證明△ABE是等邊三角形是解決問題的關(guān)鍵,并熟練掌握同高三角形面積的關(guān)系.12、A【解析】
根據(jù)圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】四邊形ABCE內(nèi)接于⊙O,,由圓周角定理可得,,故選:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓的內(nèi)接四邊形性質(zhì),解題關(guān)鍵是熟記圓內(nèi)接四邊形的任意一個(gè)外角等于它的內(nèi)對(duì)角(就是和它相鄰的內(nèi)角的對(duì)角).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】
分析:過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點(diǎn)N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定與性質(zhì)得出OA=BA,∠OAB=90°,證出∠AOM=∠BAN,由AAS證明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)?(k﹣1)=k,解方程即可.詳解:如圖所示,過A作AM⊥y軸于M,過B作BD選擇x軸于D,直線BD與AM交于點(diǎn)N,則OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵雙曲線y=(x>0)經(jīng)過點(diǎn)B,∴(1+k)?(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(負(fù)值已舍去),故答案為.點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,坐標(biāo)與圖形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì)等知識(shí).解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?4、等【解析】
根據(jù)二次函數(shù)的圖象最高點(diǎn)是坐標(biāo)原點(diǎn),可以得到a<0,b=0,c=0,所以解析式滿足a<0,b=0,c=0即可.【詳解】解:根據(jù)二次函數(shù)的圖象最高點(diǎn)是坐標(biāo)原點(diǎn),可以得到a<0,b=0,c=0,例如:.【點(diǎn)睛】此題是開放性試題,考查函數(shù)圖象及性質(zhì)的綜合運(yùn)用,對(duì)考查學(xué)生所學(xué)函數(shù)的深入理解、掌握程度具有積極的意義.15、1.88×1【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:科學(xué)記數(shù)法表示為1.88×1,故答案為:1.88×1.【點(diǎn)睛】此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.16、cm【解析】
利用已知得出底面圓的半徑為:1cm,周長為2πcm,進(jìn)而得出母線長,即可得出答案.【詳解】∵半徑為1cm的圓形,∴底面圓的半徑為:1cm,周長為2πcm,扇形弧長為:2π=,∴R=4,即母線為4cm,∴圓錐的高為:(cm).故答案為cm.【點(diǎn)睛】此題主要考查了圓錐展開圖與原圖對(duì)應(yīng)情況,以及勾股定理等知識(shí),根據(jù)已知得出母線長是解決問題的關(guān)鍵.17、30°【解析】試題分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.∵OA=OC,∴∠C=∠OAC=30°.∵∠C和∠AOD是同弧所對(duì)的圓周角和圓心角,∴∠AOD=2∠C=60°.∴∠BOD=60°-30°=30°.18、【解析】
七個(gè)數(shù)中有兩個(gè)負(fù)整數(shù),故隨機(jī)抽取一個(gè)數(shù),恰好為負(fù)整數(shù)的概率是:【詳解】這七個(gè)數(shù)中有兩個(gè)負(fù)整數(shù):-5,-1
所以,隨機(jī)抽取一個(gè)數(shù),恰好為負(fù)整數(shù)的概率是:故答案為【點(diǎn)睛】本題考查隨機(jī)事件的概率的計(jì)算方法,能準(zhǔn)確找出負(fù)整數(shù)的個(gè)數(shù),并熟悉等可能事件的概率計(jì)算公式是關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(1)70°.【解析】
(1)根據(jù)全等三角形的判定即可判斷△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根據(jù)等腰三角形的性質(zhì)即可知∠C的度數(shù),從而可求出∠BDE的度數(shù).【詳解】證明:(1)∵AE和BD相交于點(diǎn)O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠1.又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∴△AEC≌△BED(ASA).(1)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì).20、(1)畫樹狀圖得:則共有9種等可能的結(jié)果;(2)兩次摸出的球上的數(shù)字和為偶數(shù)的概率為:.【解析】試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)由(1)可求得兩次摸出的球上的數(shù)字和為偶數(shù)的有5種情況,再利用概率公式即可求得答案.試題解析:(1)畫樹狀圖得:則共有9種等可能的結(jié)果;(2)由(1)得:兩次摸出的球上的數(shù)字和為偶數(shù)的有5種情況,∴兩次摸出的球上的數(shù)字和為偶數(shù)的概率為:59考點(diǎn):列表法與樹狀圖法.21、(1)(2)作圖見解析;(3).【解析】
(1)利用平移的性質(zhì)畫圖,即對(duì)應(yīng)點(diǎn)都移動(dòng)相同的距離.(2)利用旋轉(zhuǎn)的性質(zhì)畫圖,對(duì)應(yīng)點(diǎn)都旋轉(zhuǎn)相同的角度.(3)利用勾股定理和弧長公式求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點(diǎn)作AA1的平行線且A1C1=AC,同理找到點(diǎn)B1,分別連接三點(diǎn),△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點(diǎn)B所走的路徑總長=.考點(diǎn):1.網(wǎng)格問題;2.作圖(平移和旋轉(zhuǎn)變換);3.勾股定理;4.弧長的計(jì)算.22、見解析【解析】分析:(1)根據(jù)求出點(diǎn)的坐標(biāo),用待定系數(shù)法即可求出拋物線的解析式.(2)分兩種情況進(jìn)行討論即可.(3)存在.假設(shè)直線l上存在點(diǎn)M,拋物線上存在點(diǎn)N,使得以A、O、M、N為頂點(diǎn)的四邊形為平行四邊形.分當(dāng)平行四邊形是平行四邊形時(shí),當(dāng)平行四邊形AONM是平行四邊形時(shí),當(dāng)四邊形AMON為平行四邊形時(shí),三種情況進(jìn)行討論.詳解:(1)易證,得,∴OC=2,∴C(0,2),∵拋物線過點(diǎn)A(-1,0),B(4,0)因此可設(shè)拋物線的解析式為將C點(diǎn)(0,2)代入得:,即∴拋物線的解析式為(2)如圖2,當(dāng)時(shí),則P1(,2),當(dāng)時(shí),∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P點(diǎn)的坐標(biāo)為(,2)或(,5).(3)存在.假設(shè)直線l上存在點(diǎn)M,拋物線上存在點(diǎn)N,使得以A、O、M、N為頂點(diǎn)的四邊形為平行四邊形.如圖3,當(dāng)平行四邊形是平行四邊形時(shí),M(,),(,),當(dāng)平行四邊形AONM是平行四邊形時(shí),M(,),N(,),如圖4,當(dāng)四邊形AMON為平行四邊形時(shí),MN與OA互相平分,此時(shí)可設(shè)M(,m),則∵點(diǎn)N在拋物線上,∴-m=-·(-+1)(--4)=-,∴m=,此時(shí)M(,),N(-,-).綜上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).點(diǎn)睛:屬于二次函數(shù)綜合題,考查相似三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)解析式等,注意分類討論的思想方法在數(shù)學(xué)中的應(yīng)用.23、證明見解析.【解析】
根據(jù)菱形的性質(zhì),先證明△ABE≌△ADF,即可得解.【詳解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.∵點(diǎn)E,F(xiàn)分別是BC,CD邊的中點(diǎn),∴BE=BC,DF=CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.24、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時(shí),S有最大值,最大值為;(3)存在,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【解析】
(1)將點(diǎn)E代入直線解析式中,可求出點(diǎn)C的坐標(biāo),將點(diǎn)C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點(diǎn)式,可求出點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式,代入點(diǎn)B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點(diǎn)P的坐標(biāo),則點(diǎn)G的坐標(biāo)可表示,點(diǎn)H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點(diǎn)E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點(diǎn)B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點(diǎn)M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時(shí),S有最大值,最大值為.(3)存在,如圖所示,設(shè)點(diǎn)P的坐標(biāo)為(t,0),則點(diǎn)G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對(duì)應(yīng)點(diǎn)為點(diǎn)F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時(shí),解得t1=0(舍),t2=4,此時(shí)點(diǎn)P(4,0).當(dāng)t2﹣t=﹣t時(shí),解得t1=0(舍),t2=,此時(shí)點(diǎn)P(,0).綜上,點(diǎn)P的坐標(biāo)為(4,0)或(,0).【點(diǎn)睛】此題考查了待定系數(shù)法求函數(shù)解析式,點(diǎn)坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.25、(1)圖形見解析;(2)1;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 斷橋門窗合同范本3篇
- 安居房施工合同款項(xiàng)支付條件3篇
- 搬運(yùn)工人勞務(wù)合同范本3篇
- 擋土墻施工合同技術(shù)支持3篇
- 收購糧食合同3篇
- 攪拌站施工爭議解決協(xié)議3篇
- 排水管材購買條款3篇
- 提前解除合同通知模板3篇
- 攝影合同協(xié)議書撰寫要點(diǎn)3篇
- 改擴(kuò)建工程施工合同的索賠案例3篇
- 2024屆消防安全知識(shí)競賽題庫及答案(80題)
- 構(gòu)詞法(講義)(學(xué)生版)-2025年高考英語一輪復(fù)習(xí)(新教材新高考)
- 2024秋期國家開放大學(xué)本科《納稅籌劃》一平臺(tái)在線形考(形考任務(wù)一至五)試題及答案
- 期末試卷(試題)2024-2025學(xué)年培智生活語文二年級(jí)上冊(cè)
- 《技術(shù)規(guī)程》范本
- DBJ50T-城鎮(zhèn)排水系統(tǒng)評(píng)價(jià)標(biāo)準(zhǔn)
- 小學(xué)師德考評(píng)細(xì)則
- 軟件定義網(wǎng)絡(luò)(SDN)實(shí)戰(zhàn)教程課件
- 2024版《大學(xué)生職業(yè)生涯規(guī)劃與就業(yè)指導(dǎo)》 課程教案
- 上海市住院醫(yī)師規(guī)范化培訓(xùn)公共科目考試題庫-重點(diǎn)傳染病防治知識(shí)
- 專題10閱讀理解、拓展探究-2022-2023學(xué)年八年級(jí)數(shù)學(xué)上冊(cè)期末選填解答壓軸題必刷專題訓(xùn)練(華師大版)(原卷版+解析)
評(píng)論
0/150
提交評(píng)論