版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆四川省大邑縣晉原初中中考一模數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°A.8米 B.83米 C.8332.若x=-2是關(guān)于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或43.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點C.=± D.與最接近的整數(shù)是34.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動點,AF⊥CE于點F,點E在弧AD上從A運動到D的過程中,線段CF掃過的面積為()A.4π+3 B.4π+ C.π+ D.π+35.一組數(shù)據(jù):1、2、2、3,若添加一個數(shù)據(jù)2,則發(fā)生變化的統(tǒng)計量是A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差6.如果關(guān)于x的方程沒有實數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..7.如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)8.如圖,按照三視圖確定該幾何體的側(cè)面積是(單位:cm)()A.24πcm2 B.48πcm2 C.60πcm2 D.80πcm29.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.1010.李老師為了了解學(xué)生暑期在家的閱讀情況,隨機調(diào)查了20名學(xué)生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:閱讀時間(小時)22.533.54學(xué)生人數(shù)(名)12863則關(guān)于這20名學(xué)生閱讀小時數(shù)的說法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.3411.下列說法正確的是()A.擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是必然事件B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定C.“明天降雨的概率為”,表示明天有半天都在降雨D.了解一批電視機的使用壽命,適合用普查的方式12.如圖,在中,.點是的中點,連結(jié),過點作,分別交于點,與過點且垂直于的直線相交于點,連結(jié).給出以下四個結(jié)論:①;②點是的中點;③;④,其中正確的個數(shù)是()A.4 B.3 C.2 D.1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖①,在矩形ABCD中,對角線AC與BD交于點O,動點P從點A出發(fā),沿AB勻速運動,到達點B時停止,設(shè)點P所走的路程為x,線段OP的長為y,若y與x之間的函數(shù)圖象如圖②所示,則矩形ABCD的周長為_____.14.如圖,AB是半圓O的直徑,E是半圓上一點,且OE⊥AB,點C為的中點,則∠A=__________°.15.計算:的結(jié)果為_____.16.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________17.下列對于隨機事件的概率的描述:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是0.2;③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85其中合理的有______(只填寫序號).18.如果關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.(1)求該二次函數(shù)的解析式及點M的坐標;(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫解答過程).20.(6分)如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?21.(6分)如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長線于點E.(1)求證:直線CD是⊙O的切線;(2)若DE=2BC,AD=5,求OC的值.22.(8分)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。求證:D是BC的中點;如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論。23.(8分)計算:﹣﹣|4sin30°﹣|+(﹣)﹣124.(10分)某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進價比每臺甲種品牌空調(diào)的進價高20%,用7200元購進的乙種品牌空調(diào)數(shù)量比用3000元購進的甲種品牌空調(diào)數(shù)量多2臺.求甲、乙兩種品牌空調(diào)的進貨價;該商場擬用不超過16000元購進甲、乙兩種品牌空調(diào)共10臺進行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請您幫該商場設(shè)計一種進貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.25.(10分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設(shè)拋物線的對稱軸與x軸交于點P,D為第四象限內(nèi)的一點,若△CPD為等腰直角三角形,求出D點坐標.26.(12分)在以“關(guān)愛學(xué)生、安全第一”為主題的安全教育宣傳月活動中,某學(xué)校為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機抽查部分學(xué)生,了解到上學(xué)方式主要有:A:結(jié)伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:(1)本次抽查的學(xué)生人數(shù)是多少人?(2)請補全條形統(tǒng)計圖;請補全扇形統(tǒng)計圖;(3)“自行乘車”對應(yīng)扇形的圓心角的度數(shù)是度;(4)如果該校學(xué)生有2000人,請你估計該?!凹胰私铀汀鄙蠈W(xué)的學(xué)生約有多少人?27.(12分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】此題考查的是解直角三角形如圖:AC=4,AC⊥BC,∵梯子的傾斜角(梯子與地面的夾角)不能>60°.∴∠ABC≤60°,最大角為60°.即梯子的長至少為83故選C.2、C【解析】試題解析:∵x=-2是關(guān)于x的一元二次方程的一個根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得a1=-2,a2=1.
即a的值是1或-2.
故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.3、D【解析】
根據(jù)二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數(shù)軸上存在表示的點;選項C,;選項D,與最接近的整數(shù)是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算等知識點,熟記這些知識點是解題的關(guān)鍵.4、A【解析】
連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.【詳解】如下圖,連AC,OC,BC,設(shè)CD交AB于H,∵CD垂直平分線段OB,∴CO=CB,∵OC=OB,∴OC=OB=BC,∴,∵AB是直徑,∴,∴,∵,∴點F在以AC為直徑的⊙M上運動,當E從A運動到D時,點F從A運動到H,連接MH,∵MA=MH,∴∴,∵,∴CF掃過的面積為,故選:A.【點睛】本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關(guān)鍵.5、D【解析】
解:A.原來數(shù)據(jù)的平均數(shù)是2,添加數(shù)字2后平均數(shù)仍為2,故A與要求不符;B.原來數(shù)據(jù)的中位數(shù)是2,添加數(shù)字2后中位數(shù)仍為2,故B與要求不符;C.原來數(shù)據(jù)的眾數(shù)是2,添加數(shù)字2后眾數(shù)仍為2,故C與要求不符;D.原來數(shù)據(jù)的方差==,添加數(shù)字2后的方差==,故方差發(fā)生了變化.故選D.6、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關(guān)于x的方程x1+1x+c=0沒有實數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.7、B【解析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉(zhuǎn)后的圖形,如圖所示.由圖可知:每翻轉(zhuǎn)6次,圖形向右平移2.∵3=336×6+1,∴點B1向右平移1322(即336×2)到點B3.∵B1的坐標為(1.5,),∴B3的坐標為(1.5+1322,),故選B.點睛:本題是規(guī)律題,能正確地尋找規(guī)律“每翻轉(zhuǎn)6次,圖形向右平移2”是解題的關(guān)鍵.8、A【解析】
由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其側(cè)面積.【詳解】解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應(yīng)該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為8÷1=4cm,故側(cè)面積=πrl=π×6×4=14πcm1.故選:A.【點睛】此題考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.9、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.10、B【解析】
A、根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據(jù)中位數(shù)的定義將這組數(shù)據(jù)從小到大重新排列,求出最中間的2個數(shù)的平均數(shù),即可得出中位數(shù);C、根據(jù)加權(quán)平均數(shù)公式代入計算可得;D、根據(jù)方差公式計算即可.【詳解】解:A、由統(tǒng)計表得:眾數(shù)為3,不是8,所以此選項不正確;B、隨機調(diào)查了20名學(xué)生,所以中位數(shù)是第10個和第11個學(xué)生的閱讀小時數(shù),都是3,故中位數(shù)是3,所以此選項正確;C、平均數(shù)=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權(quán)平均數(shù);中位數(shù);眾數(shù).11、B【解析】
利用事件的分類、普查和抽樣調(diào)查的特點、概率的意義以及方差的性質(zhì)即可作出判斷.【詳解】解:A、擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,6點朝上是可能事件,此選項錯誤;B、甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,此選項正確;C、“明天降雨的概率為”,表示明天有可能降雨,此選項錯誤;D、解一批電視機的使用壽命,適合用抽查的方式,此選項錯誤;故選B.【點睛】本題考查方差;全面調(diào)查與抽樣調(diào)查;隨機事件;概率的意義,掌握基本概念是解題關(guān)鍵.12、C【解析】
用特殊值法,設(shè)出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關(guān)線段的長;易證△GAB≌△DBC,求出相關(guān)線段的長;再證AG∥BC,求出相關(guān)線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設(shè)AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及等腰直角三角形的相關(guān)性質(zhì),中等難度,注意合理的運用特殊值法是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】分析:根據(jù)點P的移動規(guī)律,當OP⊥BC時取最小值2,根據(jù)矩形的性質(zhì)求得矩形的長與寬,易得該矩形的周長.詳解:∵當OP⊥AB時,OP最小,且此時AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案為1.點睛:本題考查了動點問題的函數(shù)圖象,關(guān)鍵是根據(jù)所給函數(shù)圖象和點的運動軌跡判斷出AP=4,OP=2.14、22.5【解析】
連接半徑OC,先根據(jù)點C為的中點,得∠BOC=45°,再由同圓的半徑相等和等腰三角形的性質(zhì)得:∠A=∠ACO=×45°,可得結(jié)論.【詳解】連接OC,
∵OE⊥AB,
∴∠EOB=90°,
∵點C為的中點,
∴∠BOC=45°,
∵OA=OC,
∴∠A=∠ACO=×45°=22.5°,
故答案為:22.5°.【點睛】本題考查了圓周角定理與等腰三角形的性質(zhì).解題的關(guān)鍵是注意掌握數(shù)形結(jié)合思想的應(yīng)用.15、【解析】分析:根據(jù)二次根式的性質(zhì)先化簡,再合并同類二次根式即可.詳解:原式=3-5=﹣2.點睛:此題主要考查了二次根式的加減,靈活利用二次根式的化簡是解題關(guān)鍵,比較簡單.16、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.17、②③【解析】
大量反復(fù)試驗下頻率穩(wěn)定值即概率.注意隨機事件發(fā)生的概率在0和1之間.根據(jù)事件的類型及概率的意義找到正確選項即可.【詳解】解:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,大約有50次“正面朝上”,此結(jié)論錯誤;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是,此結(jié)論正確;③測試某射擊運動員在同一條件下的成績,隨著射擊次數(shù)的增加,“射中9環(huán)以上”的頻率總是在0.85附近擺動,顯示出一定的穩(wěn)定性,可以估計該運動員“射中9環(huán)以上”的概率是0.85,此結(jié)論正確;故答案為:②③.【點睛】本題考查了概率的意義,解題的關(guān)鍵在于掌握計算公式.18、k>-且k≠1【解析】由題意知,k≠1,方程有兩個不相等的實數(shù)根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.又∵方程是一元二次方程,∴k≠1,∴k>-1/4且k≠1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).【解析】試題分析:(1)將點A、點C的坐標代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點M的坐標;(2)點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90°,則若△PCM與△BCD相似,則要進行分類討論,分成△PCM∽△BDC或△PCM∽△CDB兩種,然后利用邊的對應(yīng)比值求出點坐標.試題解析:(1)把點A(3,1),點C(0,4)代入二次函數(shù)y=﹣x2+bx+c得,解得∴二次函數(shù)解析式為y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴點M的坐標為(1,5);(2)設(shè)直線AC解析式為y=kx+b,把點A(3,1),C(0,4)代入得,解得:∴直線AC的解析式為y=﹣x+4,如圖所示,對稱軸直線x=1與△ABC兩邊分別交于點E、點F把x=1代入直線AC解析式y(tǒng)=﹣x+4解得y=3,則點E坐標為(1,3),點F坐標為(1,1)∴1<5﹣m<3,解得2<m<4;(3)連接MC,作MG⊥y軸并延長交AC于點N,則點G坐標為(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,則點N坐標為(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若點P在AC上,則∠MCP=90°,則點D與點C必為相似三角形對應(yīng)點①若有△PCM∽△BDC,則有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若點P在y軸右側(cè),作PH⊥y軸,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若點P在y軸左側(cè),則把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,則有∴CP==3∴PH=3÷=3,若點P在y軸右側(cè),把x=3代入y=﹣x+4,解得y=1;若點P在y軸左側(cè),把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合題意得點P坐標有4個,分別為P1(),P2(),P3(3,1),P4(﹣3,7).考點:二次函數(shù)綜合題20、(1)y=﹣x2+2x+3;(2)當t=或t=時,△PCQ為直角三角形;(3)當t=2時,△ACQ的面積最大,最大值是1.【解析】
(1)根據(jù)拋物線的對稱軸與矩形的性質(zhì)可得點A的坐標,根據(jù)待定系數(shù)法可得拋物線的解析式;(2)先根據(jù)勾股定理可得CE,再分兩種情況:當∠QPC=90°時;當∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上,∴點A坐標為(1,4),設(shè)拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當∠QPC=90°時,∵cos∠QPC=,∴,解得t=;當∠PQC=90°時,∵cos∠QCP=,∴,解得t=.∴當t=或t=時,△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設(shè)直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點的橫坐標為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點的縱坐標為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ?AG+FQ?DG,=FQ(AG+DG),=FQ?AD,=×2(t﹣),=﹣(t﹣2)2+1,∴當t=2時,△ACQ的面積最大,最大值是1.【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:拋物線的對稱軸,矩形的性質(zhì),待定系數(shù)法求拋物線的解析式,待定系數(shù)法求直線的解析式,勾股定理,銳角三角函數(shù),三角形面積,二次函數(shù)的最值,方程思想以及分類思想的運用.21、(1)證明見解析;(2)OC=15【解析】試題分析:(1)首選連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易證得△EDA∽△ECO,然后由相似三角形的對應(yīng)邊成比例,求得AD:OC的值.試題解析:(1)連結(jié)DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO,OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考點:1.切線的判定2.全等三角形的判定與性質(zhì)3.相似三角形的判定與性質(zhì).22、(1)詳見解析;(2)詳見解析【解析】
(1)根據(jù)兩直線平行,內(nèi)錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,再根據(jù)全等三角形的性質(zhì)和等量關(guān)系即可求解;(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.【詳解】(1)證明:∵AF∥BC,∴∠AFE=∠DCE,∵點E為AD的中點,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中點;(2)若AB=AC,則四邊形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四邊形AFBD是矩形.【點睛】本題考查了矩形的判定,全等三角形的判定與性質(zhì),平行四邊形的判定,是基礎(chǔ)題,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.23、﹣4﹣1.【解析】
先逐項化簡,再合并同類項或同類二次根式即可.【詳解】解:原式=﹣3﹣(﹣2)﹣12=﹣3﹣+2﹣12=﹣4﹣1.【點睛】本題考查了實數(shù)的混合運算,熟練掌握特殊角的三角函數(shù)值,二次根式的性質(zhì)以及負整數(shù)指數(shù)冪的意義是解答本題的關(guān)鍵.24、(1)甲種品牌的進價為1500元,乙種品牌空調(diào)的進價為1800元;(2)當購進甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時,售完后利潤最大,最大為12100元【解析】
(1)設(shè)甲種品牌空調(diào)的進貨價為x元/臺,則乙種品牌空調(diào)的進貨價為1.2x元/臺,根據(jù)數(shù)量=總價÷單價可得出關(guān)于x的分式方程,解之并檢驗后即可得出結(jié)論;(2)設(shè)購進甲種品牌空調(diào)a臺,所獲得的利潤為y元,則購進乙種品牌空調(diào)(10-a)臺,根據(jù)總價=單價×數(shù)量結(jié)合總價不超過16000元,即可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進數(shù)量即可得出y關(guān)于a的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)由(1)設(shè)甲種品牌的進價為x元,則乙種品牌空調(diào)的進價為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗,x=1500是原分式方程的解,乙種品牌空調(diào)的進價為(1+20%)×1500=1800(元).答:甲種品牌的進價為1500元,乙種品牌空調(diào)的進價為1800元;(2)設(shè)購進甲種品牌空調(diào)a臺,則購進乙種品牌空調(diào)(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設(shè)利潤為w,則w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因為-700<0,則w隨a的增大而減少,當a=7時,w最大,最大為12100元.答:當購進甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時,售完后利潤最大,最大為12100元.【點睛】本題考查了一次函數(shù)的應(yīng)用、分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)數(shù)量=總價÷單價列出關(guān)于x的分式方程;(2)根據(jù)總利潤=單臺利潤×購進數(shù)量找出y關(guān)于a的函數(shù)關(guān)系式.25、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】
(1)設(shè)解析式為y=a(x-3)(x+1),把點C(0,-3)代入即可求出解析式;(2)根據(jù)題意作出圖形,根據(jù)等腰直角三角形的性質(zhì)即可寫出坐標.【詳解】(1)設(shè)解析式為y=a(x-3)(x+1),把點C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式為y=x2-2x-3,(2)如圖所示,對稱軸為x=1,過D1作D1H⊥x軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育館建設(shè)合同
- 2025勞務(wù)分包合同
- 門窗維修簡易施工合同協(xié)議書
- 市政設(shè)施物業(yè)招投標調(diào)研
- 智能體育弱電系統(tǒng)安裝服務(wù)合同
- 城市地下空間開發(fā)復(fù)墾招投標
- 2024年高效中間業(yè)務(wù)傭金合同模板版B版
- 普通外科護士錄用模板
- 招投標項目評標方法研究
- 2025年全鋼絲子午胎成形機合作協(xié)議書
- 2024年河南省中職對口升學(xué)高考語文試題真題(解析版)
- 配合、協(xié)調(diào)、服務(wù)方案
- 《食品行業(yè)ERP應(yīng)用》課件
- 2023-2024學(xué)年廣東省廣州市黃埔區(qū)六年級(上)期末數(shù)學(xué)試卷(A卷)
- 41-降低懸挑式卸料平臺安全隱患發(fā)生率 棗莊華廈(4:3定稿)
- 初中數(shù)學(xué)新課程標準(2024年版)
- 期末測試卷(一)2024-2025學(xué)年 人教版PEP英語五年級上冊(含答案含聽力原文無聽力音頻)
- 2023-2024學(xué)年廣東省深圳市南山區(qū)八年級(上)期末英語試卷
- 期末 (試題) -2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 漢服娃衣創(chuàng)意設(shè)計與制作智慧樹知到期末考試答案章節(jié)答案2024年四川文化產(chǎn)業(yè)職業(yè)學(xué)院
- 《大數(shù)據(jù)技術(shù)原理與應(yīng)用(第3版)》期末復(fù)習(xí)題庫(含答案)
評論
0/150
提交評論