新高考數(shù)學(xué)一輪復(fù)習(xí)第7章 第03講 空間直線、平面的平行 精講(教師版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第7章 第03講 空間直線、平面的平行 精講(教師版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第7章 第03講 空間直線、平面的平行 精講(教師版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第7章 第03講 空間直線、平面的平行 精講(教師版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)第7章 第03講 空間直線、平面的平行 精講(教師版)_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第03講空間直線、平面的平行(精講)目錄第一部分:知識點精準(zhǔn)記憶第二部分:課前自我評估測試第三部分:典型例題剖析題型一:直線與平面平行的判定與性質(zhì)角度1:直線與平面平行的判定角度2:直線與平面平行的性質(zhì)題型二:平面與平面平行的判定與性質(zhì)角度1:平面與平面平行的判定角度2:平面與平面平行的性質(zhì)題型三:平行關(guān)系的綜合應(yīng)用第四部分:高考真題感悟第一部分:知識點精準(zhǔn)記憶第一部分:知識點精準(zhǔn)記憶知識點一:直線與平面平行1、直線與平面平行的定義直線SKIPIF1<0與平面SKIPIF1<0沒有公共點,則稱直線SKIPIF1<0與平面SKIPIF1<0平行.2、直線與平面平行的判定定理如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行符號表述:SKIPIF1<03、直線與平面平行的性質(zhì)定理如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線就和交線平行符號表述:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0知識點二:平面與平面平行1、平面與平面平行的定義兩個平面沒有公共點2、平面與平面平行的判定定理如果一個平面內(nèi)的有兩條相交直線平行于另一個平面,那么這兩個平面平行.符號表述:SKIPIF1<03、平面與平面平行的性質(zhì)定理3.1性質(zhì)定理兩個平行平面,如果另一個平面與這兩個平面相交,那么兩條交線平行.符號語言3.2性質(zhì)兩個平面平行,則其中一個平面內(nèi)的直線平行與另一平面符號語言:SKIPIF1<0第二部分:課前自我評估測試第二部分:課前自我評估測試1.(2022·全國·高一課時練習(xí))判斷正誤.(1)若平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0.()(2)夾在兩平行平面之間的平行線段相等.()【答案】

×

√(1)l與m可以平行或異面,故錯誤;(2)夾在兩平行平面之間的平行線段相等,故正確.2.(2022·全國·高一課時練習(xí))已知長方體SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的位置關(guān)系是()A.平行

B.相交

C.異面

D.不確定【答案】A平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,由面面平行的性質(zhì)定理可得SKIPIF1<0與SKIPIF1<0平行,故選A3.(2022·全國·高一課時練習(xí))在正方體SKIPIF1<0中,下列四對截面彼此平行的一對是()A.平面SKIPIF1<0與平面SKIPIF1<0

B.平面SKIPIF1<0與平面SKIPIF1<0C.平面SKIPIF1<0與平面SKIPIF1<0

D.平面SKIPIF1<0與平面SKIPIF1<0【答案】A由正方體可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由面面平行的判定定理可知平面SKIPIF1<0與平面SKIPIF1<0平行,故選A.4.(2022·全國·高一課時練習(xí))若一個平面內(nèi)的兩條直線分別平行于另一個平面內(nèi)的兩條直線,則這兩個平面的位置關(guān)系是()A.一定平行

B.一定相交

C.平行或相交

D.以上判斷都不對【答案】C一個平面內(nèi)的兩條直線分別平行于另一個平面內(nèi)的兩條直線,若兩條直線相交則兩個平面平行,若兩條直線平行這兩個平面可能相交,故選:C5.(2022·全國·高一課時練習(xí))直線SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0內(nèi)有n條直線交于一點,則這n條直線中與直線a平行的直線()A.至少有一條

B.至多有一條

C.有且只有一條

D.沒有【答案】C由直線SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0內(nèi)有n條直線交于一點,故過該點的直線與SKIPIF1<0的只有一條故選:C6.(2022·全國·高二課時練習(xí))若平面SKIPIF1<0平面SKIPIF1<0,直線SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的位置關(guān)系是____________.【答案】平行SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0沒有公共點,SKIPIF1<0與SKIPIF1<0的位置關(guān)系是平行.故答案為:平行第三部分:典型例題剖析第三部分:典型例題剖析題型一:直線與平面平行的判定與性質(zhì)角度1:直線與平面平行的判定典型例題例題1.(2022·四川綿陽·高二期末(理))如圖,三棱柱SKIPIF1<0的側(cè)棱與底面垂直,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0是SKIPIF1<0的中點(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求直線SKIPIF1<0與直線SKIPIF1<0所成角的余弦值.【答案】(1)證明見解析(2)SKIPIF1<0(1)設(shè)SKIPIF1<0與SKIPIF1<0的交點為SKIPIF1<0,連接SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0是SKIPIF1<0的中點,∴SKIPIF1<0∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.(2)由(1)可得直線SKIPIF1<0與直線SKIPIF1<0所成角為SKIPIF1<0,又在直三棱柱SKIPIF1<0中,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即直線SKIPIF1<0與直線SKIPIF1<0所成角的余弦值為SKIPIF1<0例題2.(2022·四川涼山·高一期末(文))已知直三棱柱SKIPIF1<0中,SKIPIF1<0為正方形,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0是邊長為2正三角形,求四面體SKIPIF1<0的體積.【答案】(1)證明見解析(2)SKIPIF1<0(1)連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0交SKIPIF1<0于點P,因為SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點,所以在SKIPIF1<0中,SKIPIF1<0,因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以四面體的體積為SKIPIF1<0.題型歸類練1.(2022·四川成都·高一期末(理))在四棱錐P-ABCD中,四邊形ABCD為矩形,平面ABCD⊥平面PAB,點E,F(xiàn)分別在線段CB,AP上,且SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0平面PCD;【答案】(1)證明見解析證明:如圖,取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,點SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點,∴SKIPIF1<0且SKIPIF1<0.在矩形SKIPIF1<0中,點SKIPIF1<0為SKIPIF1<0的中點,∴SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0且SKIPIF1<0.∴.四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0.又∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.2.(2022·重慶市第七中學(xué)校高一期末)如圖,正三棱柱SKIPIF1<0的所有棱長均為2,SKIPIF1<0為線段SKIPIF1<0的中點,SKIPIF1<0為正方形SKIPIF1<0對角線的交點.(1)求證:SKIPIF1<0面SKIPIF1<0;(2)求三棱錐SKIPIF1<0的體積.【答案】(1)見解析(2)SKIPIF1<0(1)SKIPIF1<0為正方形SKIPIF1<0對角線的交點,即SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0為線段SKIPIF1<0的中點,在SKIPIF1<0中SKIPIF1<0為中位線,可得SKIPIF1<0SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,由線面平行的判定定理可得SKIPIF1<0面SKIPIF1<0;(2)SKIPIF1<0為等邊三角形,且邊長為2,可得SKIPIF1<0,因為棱柱為正棱柱,則SKIPIF1<0面SKIPIF1<0,SKIPIF1<03.(2022·河北石家莊·高一期末)如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值.【答案】(1)證明見解析;(2)SKIPIF1<0.(1)證明:設(shè)SKIPIF1<0與SKIPIF1<0的交點為SKIPIF1<0,連接SKIPIF1<0,∵四邊形SKIPIF1<0為正方形,∴SKIPIF1<0是SKIPIF1<0的中點,又SKIPIF1<0是SKIPIF1<0的中點,∴SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.(2)解:∵SKIPIF1<0,∴SKIPIF1<0為SKIPIF1<0與SKIPIF1<0所成的角(或其補角).在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0.∴異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.4.(2022·四川南充·高二期末(文))如圖,四棱錐SKIPIF1<0的底面是正方形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點,且SKIPIF1<0.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求三棱錐SKIPIF1<0的體積.【答案】(1)證明見解析;(2)SKIPIF1<0.(1)證明:取SKIPIF1<0中點SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,SKIPIF1<0四棱錐SKIPIF1<0中,底面SKIPIF1<0是正方形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0的中點.SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0中點,SKIPIF1<0SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0為平行四邊形SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.(2)解:如圖,取PA中點M,AD中點N,連接MF,F(xiàn)N∵F,M為PD,PA中點∴SKIPIF1<0∵矩形SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,即SKIPIF1<0平面SKIPIF1<0∵F,N為PD,AD中點SKIPIF1<0SKIPIF1<0平面SKIPIF1<0SKIPIF1<0故三棱錐SKIPIF1<0的體積為SKIPIF1<0.角度2:直線與平面平行的性質(zhì)典型例題例題1.(2022·山東·濟南市章丘區(qū)第四中學(xué)高一階段練習(xí))如圖,四邊形ABCD為長方形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0的中點.設(shè)平面SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0平面PBE;(2)證明:SKIPIF1<0;(3)求三棱錐SKIPIF1<0的體積.【答案】(1)證明見解析(2)證明見解析(3)SKIPIF1<0(1)取PB中點SKIPIF1<0,連接FG,EG,因為點E、F分別為AD、PC的中點所以SKIPIF1<0,SKIPIF1<0,因為四邊形ABCD為長方形,所以SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以四邊形DEGF為平行四邊形,所以SKIPIF1<0因為SKIPIF1<0平面PBE,SKIPIF1<0平面PBE,SKIPIF1<0平面PBE(2)由(1)知SKIPIF1<0平面PBE,又SKIPIF1<0平面PDC,平面SKIPIF1<0平面SKIPIF1<0所以SKIPIF1<0(3)因為SKIPIF1<0平面ABCD,所以PD為三棱錐SKIPIF1<0的高,所以SKIPIF1<0.例題2.(2022·吉林·雙遼市第一中學(xué)高三期末(文))如圖,三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩兩垂直,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點,SKIPIF1<0的面積為SKIPIF1<0,四棱錐SKIPIF1<0的體積為SKIPIF1<0.(1)若平面SKIPIF1<0平面SKIPIF1<0,求證:SKIPIF1<0;(2)求三棱錐SKIPIF1<0的表面積.【答案】(1)證明見解析;(2)SKIPIF1<0.(1)證明:SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點,SKIPIF1<0SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.又平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(2)解:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩兩垂直,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,即SKIPIF1<0是四棱錐SKIPIF1<0的高.SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0的面積為SKIPIF1<0.SKIPIF1<0三棱錐SKIPIF1<0的表面積SKIPIF1<0.題型歸類練1.(2022·重慶巴蜀中學(xué)高二期末)如圖所示,在四棱錐SKIPIF1<0中,底面是直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0和SKIPIF1<0相交于點SKIPIF1<0,面SKIPIF1<0面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)在線段SKIPIF1<0上確定一點SKIPIF1<0,使得SKIPIF1<0面SKIPIF1<0,求此時SKIPIF1<0的值;【答案】(1)點SKIPIF1<0為SKIPIF1<0的三等分點且SKIPIF1<0,此時SKIPIF1<0(2)SKIPIF1<0(1)點SKIPIF1<0為SKIPIF1<0的三等分點且SKIPIF1<0,此時SKIPIF1<0證明:連接SKIPIF1<0,在直角梯形SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0

∴SKIPIF1<0

∴SKIPIF1<0又SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0

∴SKIPIF1<0面SKIPIF1<02.(2022·安徽池州·高一期末)在四棱錐SKIPIF1<0中,底面SKIPIF1<0為平行四邊形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0與平面SKIPIF1<0的公共直線為l.(1)寫出圖中與l平行的直線,并證明;【答案】(1)圖中與l平行的直線為SKIPIF1<0和SKIPIF1<0,證明見解析(2)證明見解析(1)圖中與l平行的直線為SKIPIF1<0和SKIPIF1<0,因為底面SKIPIF1<0為平行四邊形,所以SKIPIF1<0,因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,因為平面SKIPIF1<0與平面SKIPIF1<0的交線l,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,進一步由平行線的傳遞性得,SKIPIF1<0;3.(2022·全國·高三專題練習(xí))芻(chu?)甍(me?ng)是幾何體中的一種特殊的五面體.中國古代數(shù)學(xué)名著《九章算術(shù)》中記載:“芻甍者,下有袤有廣,而上有袤無廣.芻,草也.甍,屋蓋也.求積術(shù)日:倍下表,上袤從之,以廣乘之,又以高乘之,六而一.”翻譯為“底面有長有寬為矩形,頂部只有長沒有寬為一條棱.芻甍字面意思為茅草屋頂SKIPIF1<0”現(xiàn)有一個芻甍如圖所示,四邊形SKIPIF1<0為長方形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0和SKIPIF1<0是全等的等邊三角形.求證:SKIPIF1<0∥SKIPIF1<0;【答案】證明見解析五面體SKIPIF1<0中,因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.4.(2022·全國·模擬預(yù)測(理))如圖1,在矩形SKIPIF1<0中,點E在邊SKIPIF1<0上,SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0進行翻折,翻折后D點到達P點位置,且滿足平面SKIPIF1<0平面SKIPIF1<0,如圖2.(1)若點F在棱SKIPIF1<0上,且SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,求SKIPIF1<0;【答案】(1)SKIPIF1<0如圖,在SKIPIF1<0上取點SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.因為SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0.又因為SKIPIF1<0,所以SKIPIF1<0.5.(2022·全國·高三專題練習(xí))如圖,在四棱錐S-ABCD中,底面ABCD是菱形,SKIPIF1<0,SKIPIF1<0為等邊三角形,G是線段SB上的一點,且SKIPIF1<0平面SKIPIF1<0.求證:G為SB的中點【答案】證明見解析如圖,連接SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的中點,連接SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,而SKIPIF1<0為SKIPIF1<0的中點,∴SKIPIF1<0為SKIPIF1<0的中點.題型二:平面與平面平行的判定與性質(zhì)角度1:平面與平面平行的判定典型例題例題1.(2022·北京延慶·高一期末)如圖,已知正方體SKIPIF1<0的棱長為SKIPIF1<0分別是SKIPIF1<0的中點.(1)求證:平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0;(2)求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0;(3)求三棱錐SKIPIF1<0的體積.【答案】(1)詳見解析;(2)詳見解析;(3)SKIPIF1<0.(1)由正方體的性質(zhì)可得SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,同理可得SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,∴平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0;(2)由題可知SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0;(3)由題可知三棱錐SKIPIF1<0的體積為SKIPIF1<0.例題2.(2022·山東山東·高一期中)如圖,在長方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0,SKIPIF1<0分別為邊SKIPIF1<0,SKIPIF1<0的中點.(1)求三棱錐SKIPIF1<0的體積;(2)證明:平面SKIPIF1<0平面BDE.【答案】(1)SKIPIF1<0(2)證明見解析(1)顯然三棱錐SKIPIF1<0與三棱錐SKIPIF1<0的體積相等,即SKIPIF1<0,∵長方體SKIPIF1<0,∴三棱錐SKIPIF1<0的高為SKIPIF1<0,且三棱錐SKIPIF1<0的底面面積即△SKIPIF1<0的面積為SKIPIF1<0,∴三棱錐SKIPIF1<0的體積SKIPIF1<0.(2)∵長方體SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵點SKIPIF1<0,SKIPIF1<0分別為邊SKIPIF1<0,SKIPIF1<0的中點,∴SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形,∴SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,如圖,連接SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,∴點SKIPIF1<0為SKIPIF1<0的中點,∴SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0.例題3.(2022·福建省福州第一中學(xué)高一期末)如圖①,在棱長為SKIPIF1<0的正方體SKIPIF1<0木塊中,SKIPIF1<0是SKIPIF1<0的中點.(1)求四棱錐SKIPIF1<0的體積;(2)要經(jīng)過點SKIPIF1<0將該木塊鋸開,使截面平行于平面SKIPIF1<0,在該木塊的表面應(yīng)該怎樣畫線?(請在圖②中作圖,并寫出畫法,不必說明理由).【答案】(1)SKIPIF1<0;(2)答案見解析.(1)在正方體SKIPIF1<0中,連接SKIPIF1<0,如圖,SKIPIF1<0且SKIPIF1<0,則四邊形SKIPIF1<0為平行四邊形,有SKIPIF1<0,三棱錐SKIPIF1<0的體積SKIPIF1<0,所以四棱錐SKIPIF1<0的體積SKIPIF1<0.(2)取棱SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0就是所求作的線,如圖:在正方體SKIPIF1<0中,連SKIPIF1<0,因SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0為SKIPIF1<0的中點,則SKIPIF1<0,且SKIPIF1<0,于是得四邊形SKIPIF1<0是平行四邊形,有SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,即四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,于是有SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,從而得平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0就是所求作的線.題型歸類練1.(2022·甘肅武威·高一期末)如圖,在三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0,SKIPIF1<0的中點.(1)求證:SKIPIF1<0平面SKIPIF1<0.(2)在線段SKIPIF1<0上是否存在一點SKIPIF1<0,使平面SKIPIF1<0平面SKIPIF1<0請說明理由.【答案】(1)證明見解析(2)存在,理由見解析(1)證明:因為SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0的中點所以SKIPIF1<0A.因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0B.又因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0因為SKIPIF1<0為SKIPIF1<0的中點所以SKIPIF1<0.因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,同理可得,SKIPIF1<0平面SKIPIF1<0,又因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0故在線段SKIPIF1<0上存在一點SKIPIF1<0,使平面SKIPIF1<0平面SKIPIF1<0.2.(2022·河南·模擬預(yù)測(文))如圖,在四棱柱SKIPIF1<0中,四邊形ABCD是正方形,E,F(xiàn),G分別是棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點.(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)若點SKIPIF1<0在底面ABCD的投影是四邊形ABCD的中心,SKIPIF1<0,求三棱錐SKIPIF1<0的體積.【答案】(1)證明見解析(2)SKIPIF1<0(1)證明:連接EG,SKIPIF1<0.因為E,G分別是棱SKIPIF1<0,SKIPIF1<0的中點,所以SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,則SKIPIF1<0.因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因為E,F(xiàn)分別是棱SKIPIF1<0,SKIPIF1<0的中點,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因為SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)連接AC,BD,記SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0平面ABCD.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,則四棱柱SKIPIF1<0的體積SKIPIF1<0.故三棱錐SKIPIF1<0的體積SKIPIF1<0,即三棱錐SKIPIF1<0的體積為SKIPIF1<0.3.(2022·湖南衡陽·高一期末)如圖:正方體ABCD-A1B1C1D1棱長為2,E,F(xiàn)分別為DD1,BB1的中點.(1)求證:CF//平面A1EC1;(2)過點D做正方體截面使其與平面A1EC1平行,請給以證明并求出該截面的面積.【答案】(1)證明見解析(2)證明見解析,SKIPIF1<0(1)取SKIPIF1<0中點M,連接SKIPIF1<0由SKIPIF1<0,可得四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0由SKIPIF1<0,可得四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0則SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0;(2)取AA1,CC1中點G,H,連接DG,CB1,B1H,HD,因為四邊形ADHF為平行四邊形,所以AF//DH因為四邊形AFB1G為平行四邊形,所以GB1//AF,所以GB1//DH所以GDHB1即為過點D長方體截面,∵DG//A1E,SKIPIF1<0平面AEC1,SKIPIF1<0平面AEC1,∴DG//平面AEC1∵DH//C1E,SKIPIF1<0平面AEC1,SKIPIF1<0平面AEC1,∴DH//平面AEC1又∵SKIPIF1<0,∴平面DHB1G//平面AEC1.SKIPIF1<0角度2:平面與平面平行的性質(zhì)典型例題例題1.(2022·全國·高三專題練習(xí))在三棱柱SKIPIF1<0中,(1)若SKIPIF1<0分別是SKIPIF1<0的中點,求證:平面SKIPIF1<0平面SKIPIF1<0.(2)若點SKIPIF1<0分別是SKIPIF1<0上的點,且平面SKIPIF1<0平面SKIPIF1<0,試求SKIPIF1<0的值.【答案】(1)證明見解析;(2)1.(1)∵SKIPIF1<0分別是SKIPIF1<0的中點,∴SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0;(2)連接SKIPIF1<0交SKIPIF1<0于O,連接SKIPIF1<0,由平面SKIPIF1<0平面SKIPIF1<0,且平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,又由題設(shè)SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0.例題2.(2022·遼寧錦州·高一期末)如圖,已知四棱錐SKIPIF1<0中,平面SKIPIF1<0平面SKIPIF1<0,底面SKIPIF1<0為矩形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為棱SKIPIF1<0的中點,點SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0.(1)證明:SKIPIF1<0;(2)在棱SKIPIF1<0上是否存在一點F使SKIPIF1<0平面SKIPIF1<0?若存在,請指出點SKIPIF1<0的位置并證明;若不存在,請說明理由.【答案】(1)證明見解析(2)存在,F(xiàn)為線段PB上靠近點B的三等分點;證明見解析(1)連接OE,OC,OP,四棱錐SKIPIF1<0中,SKIPIF1<0,O為AB的中點,所以SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面PAB所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0(2)存在,F(xiàn)為線段PB上靠近點B的三等分點.取BC的三等分點M(靠近點C),連接AM,易知SKIPIF1<0,SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,取BM中點N,連接ON,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0因為N為BM中點,所以N為BC的三等分點(靠近點B),連接OF,NF,所以SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.題型歸類練1.(2022·江蘇·高一課時練習(xí))在三棱柱SKIPIF1<0中,點SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0上的點,且平面SKIPIF1<0平面SKIPIF1<0,試求SKIPIF1<0的值.【答案】SKIPIF1<0【詳解】解:連接SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,如下圖所示:由棱柱的性質(zhì)可知,四邊形SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論