新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題3 圓錐曲線中的長(zhǎng)度問(wèn)題(原卷版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題3 圓錐曲線中的長(zhǎng)度問(wèn)題(原卷版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題3 圓錐曲線中的長(zhǎng)度問(wèn)題(原卷版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題3 圓錐曲線中的長(zhǎng)度問(wèn)題(原卷版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)圓錐曲線重難點(diǎn)提升專題3 圓錐曲線中的長(zhǎng)度問(wèn)題(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題3圓錐曲線中的長(zhǎng)度問(wèn)題一、考情分析圓錐曲線中的長(zhǎng)度問(wèn)題是直線與圓錐曲線中最基本的問(wèn)題,一般出現(xiàn)在解答題第2問(wèn),常見(jiàn)的有焦半徑、弦長(zhǎng)、兩點(diǎn)間距離、點(diǎn)到直線距離、三角形周長(zhǎng)等,求解方法可以用兩點(diǎn)間距離公式、弦長(zhǎng)公式、點(diǎn)到直線距離公式、函數(shù)求最值等.二、解題秘籍(一)利用兩點(diǎn)間距離公式求線段長(zhǎng)度若直線與圓錐曲線的交點(diǎn)坐標(biāo)已知或可求,可直線利用兩點(diǎn)間距離公式求線段長(zhǎng)度.【例1】(2022屆山西省呂梁市高三上學(xué)期12月月考)在平面直角坐標(biāo)系SKIPIF1<0中,已知橢圓SKIPIF1<0的右準(zhǔn)線為SKIPIF1<0(定義:橢圓C的右準(zhǔn)線方程為SKIPIF1<0,其中SKIPIF1<0).點(diǎn)P是右準(zhǔn)線上的動(dòng)點(diǎn),過(guò)點(diǎn)P作橢圓C的兩條切線,分別與y軸交于M,N兩點(diǎn).當(dāng)P在x軸上時(shí),SKIPIF1<0.(1)求橢圓C的方程;(2)求SKIPIF1<0的最小值.【解析】(1)由題意可知,當(dāng)P點(diǎn)坐標(biāo)為SKIPIF1<0時(shí),SKIPIF1<0,不妨設(shè)點(diǎn)M在點(diǎn)N上方,則SKIPIF1<0,所以直線SKIPIF1<0與橢圓C相切,將直線SKIPIF1<0與橢圓方程聯(lián)立,SKIPIF1<0消去y,整理得SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以SKIPIF1<0,即橢圓C的方程為SKIPIF1<0;(2)設(shè)SKIPIF1<0,切線方程為SKIPIF1<0,將切線方程與橢圓聯(lián)立,SKIPIF1<0消去y,整理得SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,設(shè)切線SKIPIF1<0斜率為SKIPIF1<0,直線SKIPIF1<0斜率為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0代入上式,整理得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),上述等號(hào)成立,即SKIPIF1<0的最小值為4.(二)利用SKIPIF1<0求距離設(shè)斜率為k(k≠0)的直線l與圓錐曲線C相交于A(x1,y1),B(x2,y2)兩點(diǎn),則|AB|=eq\r(1+k2)|x2-x1|.其中求|x2-x1|通常使用根與系數(shù)的關(guān)系,即作如下變形:|x2-x1|=SKIPIF1<0,【例2】(2022屆陜西省安康市高三下學(xué)期聯(lián)考)已知橢圓SKIPIF1<0長(zhǎng)軸的頂點(diǎn)與雙曲線SKIPIF1<0實(shí)軸的頂點(diǎn)相同,且SKIPIF1<0的右焦點(diǎn)SKIPIF1<0到SKIPIF1<0的漸近線的距離為SKIPIF1<0.(1)求SKIPIF1<0與SKIPIF1<0的方程;(2)若直線SKIPIF1<0的傾斜角是直線SKIPIF1<0的傾斜角的SKIPIF1<0倍,且SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),與SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),求SKIPIF1<0.【解析】(1)由題意可得SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0的漸近線方程為SKIPIF1<0,即SKIPIF1<0,橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,由題意可得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故橢圓SKIPIF1<0的方程為SKIPIF1<0,雙曲線SKIPIF1<0的方程為SKIPIF1<0.(2)設(shè)直線SKIPIF1<0的傾斜角為SKIPIF1<0,所以,直線SKIPIF1<0的斜率為SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,故SKIPIF1<0.(三)利用SKIPIF1<0求距離設(shè)斜率為k(k≠0)的直線l與圓錐曲線C相交于A(x1,y1),B(x2,y2)兩點(diǎn),則|AB|=eq\r(1+\f(1,k2))|y2-y1|.當(dāng)消去x整理方程為關(guān)于y的一元二次方程常用此結(jié)論.其中求|y2-y1|時(shí)通常使用根與系數(shù)的關(guān)系,即作如下變形:|y2-y1|=SKIPIF1<0.【例3】(2023屆重慶市巴蜀中學(xué)校高三上學(xué)期月考)已知橢圓SKIPIF1<0的離心率SKIPIF1<0;上頂點(diǎn)為A,右頂點(diǎn)為SKIPIF1<0,直線SKIPIF1<0與圓SKIPIF1<0相切.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)設(shè)與圓SKIPIF1<0相切的直線SKIPIF1<0與橢圓相交于SKIPIF1<0兩點(diǎn),SKIPIF1<0為弦SKIPIF1<0的中點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn).求SKIPIF1<0的取值范圍.【解析】(1)由SKIPIF1<0知SKIPIF1<0,原點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,故SKIPIF1<0,故橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)SKIPIF1<0時(shí):SKIPIF1<0,或SKIPIF1<0,故SKIPIF1<0;直線SKIPIF1<0斜率不存在時(shí),SKIPIF1<0,或SKIPIF1<0.故SKIPIF1<0;直線SKIPIF1<0斜率存在且不為0時(shí):設(shè)直線SKIPIF1<0的方程為SKIPIF1<0(SKIPIF1<0),由直線SKIPIF1<0與圓SKIPIF1<0相切,所以SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,設(shè)SKIPIF1<0,由韋達(dá)定理:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0中點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立,SKIPIF1<0綜上:SKIPIF1<0的取值范圍是SKIPIF1<0.(四)利用點(diǎn)到直線距離公式求垂線段的長(zhǎng)1.若已知定點(diǎn)P,點(diǎn)Q在動(dòng)直線上,求SKIPIF1<0最小值,常利用點(diǎn)到直線距離公式;2.若點(diǎn)P在定直線上,點(diǎn)Q為曲線上,求SKIPIF1<0最小值,有時(shí)可轉(zhuǎn)換為與定直線平行的切線的切點(diǎn)到定直線的距離.【例4】(2023屆上海市華東師范大學(xué)第二附屬中學(xué)高三上學(xué)期考試)設(shè)有橢圓方程SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0下端點(diǎn)為SKIPIF1<0,左?右焦點(diǎn)分別為SKIPIF1<0在SKIPIF1<0上.(1)若SKIPIF1<0中點(diǎn)在SKIPIF1<0軸上,求點(diǎn)SKIPIF1<0的坐標(biāo);(2)直線SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0,直線SKIPIF1<0經(jīng)過(guò)右焦點(diǎn)SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0;(3)在橢圓SKIPIF1<0上存在一點(diǎn)SKIPIF1<0到SKIPIF1<0距離為SKIPIF1<0,使SKIPIF1<0,當(dāng)SKIPIF1<0變化時(shí),求SKIPIF1<0的最小值.【解析】(1)因?yàn)樽蠼裹c(diǎn)SKIPIF1<0,所以SKIPIF1<0,由題知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0中點(diǎn)在SKIPIF1<0軸上,所以點(diǎn)SKIPIF1<0的縱坐標(biāo)為1,代入SKIPIF1<0中的SKIPIF1<0,所以點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0.(2)如圖,設(shè)直線SKIPIF1<0與SKIPIF1<0軸交點(diǎn)為SKIPIF1<0,因?yàn)橹本€SKIPIF1<0為SKIPIF1<0,所以直線SKIPIF1<0的傾斜角為SKIPIF1<0,SKIPIF1<0①,由題意知,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,整理可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0舍去,SKIPIF1<0.(3)設(shè)直線SKIPIF1<0平移后與橢圓相切的直線SKIPIF1<0方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)闄E圓上存在點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0①,同時(shí)SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以①式右側(cè)肯定成立,左側(cè)可以整理為SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0取得最小值SKIPIF1<0時(shí),SKIPIF1<0有最大值,最大值為SKIPIF1<0.(五)利用函數(shù)思想求距離最值求圓錐曲線上的動(dòng)點(diǎn)到一定點(diǎn)距離的最值,有時(shí)可設(shè)出動(dòng)點(diǎn)坐標(biāo),利用距離公式把問(wèn)題轉(zhuǎn)化為函數(shù)求最值.【例5】已知橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上.(1)求SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0的上頂點(diǎn)為A,右頂點(diǎn)為B,直線SKIPIF1<0與SKIPIF1<0平行,且與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的右焦點(diǎn),求SKIPIF1<0的最小值.【解析】(1)因?yàn)镾KIPIF1<0的長(zhǎng)軸長(zhǎng)為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.又點(diǎn)SKIPIF1<0在SKIPIF1<0上,所以SKIPIF1<0,代入SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的方程為SKIPIF1<0.(2)由(1)可知,A,B的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)SKIPIF1<0,聯(lián)立SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以D為MN的中點(diǎn),則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,且最小值為SKIPIF1<0.(六)利用圓錐曲線定義求長(zhǎng)度與圓錐曲線焦點(diǎn)弦或焦半徑有關(guān)的長(zhǎng)度計(jì)算可利用圓錐曲線定義求解.【例6】(2022屆湖南省長(zhǎng)沙市寧鄉(xiāng)市高三下學(xué)期5月模擬)已知拋物線SKIPIF1<0SKIPIF1<0的焦點(diǎn)與橢圓SKIPIF1<0SKIPIF1<0的右焦點(diǎn)SKIPIF1<0重合,橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)過(guò)點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0兩點(diǎn),交拋物線SKIPIF1<0于SKIPIF1<0兩點(diǎn),請(qǐng)問(wèn)是否存在實(shí)常數(shù)SKIPIF1<0,使SKIPIF1<0為定值?若存在,求出SKIPIF1<0的值;若不存在,說(shuō)明理由.【解析】(1)因?yàn)閽佄锞€SKIPIF1<0SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,故橢圓SKIPIF1<0的方程為:SKIPIF1<0;(2)設(shè)SKIPIF1<0?SKIPIF1<0?SKIPIF1<0?SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,與橢圓SKIPIF1<0的方程聯(lián)立SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,設(shè)直線SKIPIF1<0的方程SKIPIF1<0,與拋物線G的方程聯(lián)立SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,要使SKIPIF1<0為常數(shù),則SKIPIF1<0,解得SKIPIF1<0,故存在SKIPIF1<0,使得SKIPIF1<0為定值SKIPIF1<0.【例7】(2023屆江蘇省南京市高三上學(xué)期測(cè)試)已知點(diǎn)B是圓C:SKIPIF1<0上的任意一點(diǎn),點(diǎn)F(SKIPIF1<0,0),線段BF的垂直平分線交BC于點(diǎn)P.(1)求動(dòng)點(diǎn)Р的軌跡E的方程;(2)設(shè)曲線E與x軸的兩個(gè)交點(diǎn)分別為A1,A2,Q為直線x=4上的動(dòng)點(diǎn),且Q不在x軸上,QA1與E的另一個(gè)交點(diǎn)為M,QA2與E的另一個(gè)交點(diǎn)為N,證明:△FMN的周長(zhǎng)為定值.【解析】(1)因?yàn)辄c(diǎn)P在BF垂直平分線上,所以有SKIPIF1<0,所以:SKIPIF1<0,即PF+PC為定值4SKIPIF1<0,所以軌跡E為橢圓,且SKIPIF1<0,所以SKIPIF1<0,所以軌跡E的方程為:SKIPIF1<0.(2)由題知:SKIPIF1<0,設(shè)SKIPIF1<0則SKIPIF1<0,SKIPIF1<0,所以QA1方程為:SKIPIF1<0,QA2方程為:SKIPIF1<0,聯(lián)立方程:SKIPIF1<0,可以得出M:SKIPIF1<0同理可以計(jì)算出點(diǎn)N坐標(biāo):SKIPIF1<0,當(dāng)SKIPIF1<0存在,即SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0所以直線MN的方程為:SKIPIF1<0即:SKIPIF1<0,所以直線過(guò)定點(diǎn)SKIPIF1<0,即過(guò)橢圓的右焦點(diǎn)SKIPIF1<0,所以△FMN的周長(zhǎng)為4a=8.當(dāng)SKIPIF1<0不存在,即SKIPIF1<0,即SKIPIF1<0時(shí),可以計(jì)算出SKIPIF1<0,周長(zhǎng)也等于8.所以△FMN的周長(zhǎng)為定值8.三、跟蹤檢測(cè)1.(2023屆北京市高三上學(xué)期入學(xué)定位考試)已知橢圓C:SKIPIF1<0(其中SKIPIF1<0)的離心率為SKIPIF1<0,左右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.(1)求橢圓C的方程;(2)過(guò)點(diǎn)SKIPIF1<0作斜率為k的直線與橢圓C交于不同的A,B兩點(diǎn),過(guò)原點(diǎn)作AB的垂線,垂足為D.若點(diǎn)D恰好是SKIPIF1<0與A的中點(diǎn),求線段AB的長(zhǎng)度.2.(2023屆福建省部分名校高三上學(xué)期9月聯(lián)考)已知兩點(diǎn)SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0在SKIPIF1<0軸的投影為SKIPIF1<0,且SKIPIF1<0,記動(dòng)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0.(1)求SKIPIF1<0的方程.(2)過(guò)點(diǎn)SKIPIF1<0的直線與曲線SKIPIF1<0在SKIPIF1<0軸右側(cè)相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),線段SKIPIF1<0的垂直平分線與SKIPIF1<0軸相交于點(diǎn)SKIPIF1<0,試問(wèn)SKIPIF1<0是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.3.(2023屆四川省巴中市高三上學(xué)期考試)已知橢圓SKIPIF1<0:SKIPIF1<0的左、右頂點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,且直線SKIPIF1<0的斜率與直線SKIPIF1<0的斜率之積為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)若圓SKIPIF1<0的切線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0、SKIPIF1<0兩點(diǎn),求SKIPIF1<0的最大值及此時(shí)直線SKIPIF1<0的斜率.4.(2023屆安徽省部分校高三上學(xué)期摸底考)已知SKIPIF1<0為坐標(biāo)原點(diǎn),橢圓SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,記線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0.(1)若直線SKIPIF1<0的斜率為3,求直線SKIPIF1<0的斜率;(2)若四邊形SKIPIF1<0為平行四邊形,求SKIPIF1<0的取值范圍.5.(2023屆遼寧省朝陽(yáng)市高三上學(xué)期9月月考)已知雙曲線SKIPIF1<0的離心率為SKIPIF1<0,點(diǎn)SKIPIF1<0在雙曲線SKIPIF1<0上.(1)求雙曲線SKIPIF1<0的方程;(2)點(diǎn)SKIPIF1<0,SKIPIF1<0在雙曲線SKIPIF1<0上,直線SKIPIF1<0,SKIPIF1<0與SKIPIF1<0軸分別相交于SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,若坐標(biāo)原點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),SKIPIF1<0,證明:存在定點(diǎn)SKIPIF1<0,使得SKIPIF1<0為定值.6.(2023屆北京市房山區(qū)高三上學(xué)期考試)已知橢圓SKIPIF1<0的長(zhǎng)軸的兩個(gè)端點(diǎn)分別為SKIPIF1<0離心率為SKIPIF1<0.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)M為橢圓C上除A,B外任意一點(diǎn),直線SKIPIF1<0交直線SKIPIF1<0于點(diǎn)N,點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)O且與直線SKIPIF1<0垂直的直線記為l,直線SKIPIF1<0交y軸于點(diǎn)P,交直線l于點(diǎn)Q,求證:SKIPIF1<0為定值.7.(2022屆浙江省“數(shù)海漫游”高三上學(xué)期模擬)已知斜率為k的直線l與拋物線y2=4x交于A?B兩點(diǎn),y軸上的點(diǎn)P使得△ABP是等邊三角形.(1)若k>0,證明:點(diǎn)P在y軸正半軸上;(2)當(dāng)SKIPIF1<0取到最大值時(shí),求實(shí)數(shù)k的值.8.(2022屆上海市建平中學(xué)高三上學(xué)期考試)設(shè)實(shí)數(shù)SKIPIF1<0,橢圓D:SKIPIF1<0的右焦點(diǎn)為F,過(guò)F且斜率為k的直線交D于P、Q兩點(diǎn),若線段PQ的中為N,點(diǎn)O是坐標(biāo)原點(diǎn),直線ON交直線SKIPIF1<0于點(diǎn)M.(1)若點(diǎn)P的橫坐標(biāo)為1,求點(diǎn)Q的橫坐標(biāo);(2)求證:SKIPIF1<0;(3)求SKIPIF1<0的最大值.9.(2022屆江蘇省南京高三上學(xué)期12月聯(lián)考)已知橢圓C:SKIPIF1<00)的離心率為SKIPIF1<0,右頂點(diǎn)為A,過(guò)點(diǎn)B(a,1)的直線l與橢圓C交于不同的兩點(diǎn)M,N,其中點(diǎn)M在第一象限當(dāng)點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱時(shí),點(diǎn)M的橫坐標(biāo)為SKIPIF1<0.(1)求橢圓C的方程;(2)過(guò)點(diǎn)N作x軸的垂線,與直線AM交于點(diǎn)P,Q為線段NP的中點(diǎn),求直線AQ的斜率,并求線段AQ長(zhǎng)度的最大值.10.(2022屆廣東省華南師范大學(xué)附屬中學(xué)高三上學(xué)期綜合測(cè)試)已知橢圓SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,離心率為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)直線SKIPIF1<0與橢圓SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),求SKIPIF1<0的最大值.11.(2022屆百校聯(lián)盟高三上學(xué)期11月質(zhì)監(jiān))在平面直角坐標(biāo)系SKIPIF1<0中,動(dòng)點(diǎn)SKIPIF1<0,滿足SKIPIF1<0,記點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0.(1)請(qǐng)說(shuō)明SKIPIF1<0是什么曲線,并寫(xiě)出它的方程;(2)設(shè)不過(guò)原點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于不同的兩點(diǎn)SKIPIF1<0,SKIPIF1<0,線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,直線SKIPIF1<0與SKIPIF1<0交于兩點(diǎn)SKIPIF1<0,SKIPIF1<0,請(qǐng)判斷SKIPIF1<0與SKIPIF1<0的關(guān)系,并證明你的結(jié)論.12.(2022屆河南省縣級(jí)示范性高中高三上學(xué)期11月尖子生對(duì)抗賽)已知橢圓SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)與過(guò)原點(diǎn)的直線相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),上頂點(diǎn)SKIPIF1<0滿足SKIPIF1<0(其中SKIPIF1<0表示直線的概率).(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)若與直線SKIPIF1<0平行且過(guò)橢圓SKIPIF1<0的右焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論