新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(練)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(練)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(練)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(練)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(練)(解析版)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第02講一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)1.已知點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,則曲線在點(diǎn)SKIPIF1<0處的切線方程為_________.【答案】SKIPIF1<0【詳解】因?yàn)辄c(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,對函數(shù)求導(dǎo)得SKIPIF1<0,則曲線在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0,因此,曲線在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.2.過曲線SKIPIF1<0上一點(diǎn)SKIPIF1<0且與曲線在點(diǎn)SKIPIF1<0處的切線垂直的直線的方程為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0,曲線在點(diǎn)SKIPIF1<0處的切線斜率是SKIPIF1<0,∴過點(diǎn)SKIPIF1<0且與曲線在點(diǎn)SKIPIF1<0處的切線垂直的直線的斜率為SKIPIF1<0,∴所求直線方程為SKIPIF1<0,即SKIPIF1<0.故選:A.3.已知曲線SKIPIF1<0與直線SKIPIF1<0相切,則實(shí)數(shù)a的值為__________.【答案】2【解答】解:設(shè)切點(diǎn)為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,則由題意得,SKIPIF1<0,解得SKIPIF1<0,故答案為:24.若曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,則SKIPIF1<0__________【答案】SKIPIF1<0解:將SKIPIF1<0代入SKIPIF1<0,得切點(diǎn)為SKIPIF1<0,SKIPIF1<0SKIPIF1<0①,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0②.聯(lián)立①②解得:SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<05、過點(diǎn)SKIPIF1<0作曲線SKIPIF1<0(SKIPIF1<0)的切線,則切點(diǎn)坐標(biāo)為________.【答案】SKIPIF1<0【詳解】由SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0,化簡得SKIPIF1<0,則SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,顯然SKIPIF1<0不在曲線上,則SKIPIF1<0,得SKIPIF1<0,則切點(diǎn)坐標(biāo)為SKIPIF1<0.故答案為:SKIPIF1<0.6.已知函數(shù)SKIPIF1<0存在單調(diào)遞減區(qū)間,且SKIPIF1<0的圖象在SKIPIF1<0處的切線l與曲線SKIPIF1<0相切,符合情況的切線l()A.有3條 B.有2條 C.有1條 D.不存在【答案】D【解析】試題分析:SKIPIF1<0,依題意,SKIPIF1<0在SKIPIF1<0上有解.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上無解,不符合題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0符合題意,故SKIPIF1<0.易知曲線SKIPIF1<0在SKIPIF1<0處的切線為SKIPIF1<0.假設(shè)該直線與SKIPIF1<0相切,設(shè)切點(diǎn)為SKIPIF1<0,即有SKIPIF1<0,消去SKIPIF1<0化簡得SKIPIF1<0,分別畫出SKIPIF1<0的圖像,觀察可知它們交點(diǎn)橫坐標(biāo)SKIPIF1<0,SKIPIF1<0,這與SKIPIF1<0矛盾,故不存在.7.曲線SKIPIF1<0與曲線SKIPIF1<0有()條公切線.A.1 B.2 C.3 D.4【答案】B【詳解】設(shè)SKIPIF1<0是曲線SKIPIF1<0圖像上任意一點(diǎn),SKIPIF1<0,所以SKIPIF1<0,所以過點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0,整理得SKIPIF1<0①.令SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以曲線SKIPIF1<0上過點(diǎn)SKIPIF1<0的切線方程為:SKIPIF1<0,整理得SKIPIF1<0②.由于切線①②重合,故SKIPIF1<0,即SKIPIF1<0③.構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí)SKIPIF1<0遞減、當(dāng)SKIPIF1<0時(shí)SKIPIF1<0遞增,注意到當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,且SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0遞增,而SKIPIF1<0,根據(jù)零點(diǎn)存在性定理可知在區(qū)間SKIPIF1<0各存在SKIPIF1<0的一個(gè)零點(diǎn),也即SKIPIF1<0有兩個(gè)零點(diǎn),也即方程③有兩個(gè)根,也即曲線SKIPIF1<0和曲線SKIPIF1<0有兩條公切線.故選:B8.已知點(diǎn)M在函數(shù)SKIPIF1<0圖象上,點(diǎn)N在函數(shù)SKIPIF1<0圖象上,則SKIPIF1<0的最小值為()A.1 B.SKIPIF1<0 C.2 D.3【答案】B【分析】根據(jù)函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0互為反函數(shù),將問題轉(zhuǎn)化為求函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0平行的切線的切點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的兩倍,利用導(dǎo)數(shù)求出切點(diǎn)坐標(biāo),根據(jù)點(diǎn)到直線的距離公式可得結(jié)果.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0與函數(shù)SKIPIF1<0互為反函數(shù),它們的圖象關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0的最小值為函數(shù)SKIPIF1<0的圖象上的點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的2倍,即為函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0平行的切線的切點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的兩倍,因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0的圖象上與直線SKIPIF1<0平行的切線的斜率SKIPIF1<0,所以SKIPIF1<0,所以切點(diǎn)為SKIPIF1<0,它到直線SKIPIF1<0的距離SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.9.設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0取得最小值SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的最小值為___________.【答案】10【詳解】解:SKIPIF1<0表示點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0距離的平方,而點(diǎn)SKIPIF1<0是直線SKIPIF1<0上任一點(diǎn),點(diǎn)SKIPIF1<0是反比例函數(shù)SKIPIF1<0在第四象限上的點(diǎn),當(dāng)SKIPIF1<0是斜率為SKIPIF1<0的直線與SKIPIF1<0相切的切點(diǎn)時(shí),點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離即為SKIPIF1<0的最小值,由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取等號,所以函數(shù)SKIPIF1<0的最小值為10,故答案為:1010.若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【詳解】SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,可得曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,可得曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的方程為SKIPIF1<0,由兩條切線重合的條件,可得SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<01.已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的傾斜角為SKIPIF1<0,則SKIPIF1<0的值為()A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B解:函數(shù)SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,SKIPIF1<0函數(shù)f(x)在x=1處的傾斜角為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0故選B.2.曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,則切點(diǎn)SKIPIF1<0的坐標(biāo)是____________.【答案】SKIPIF1<0【詳解】由函數(shù)SKIPIF1<0,則SKIPIF1<0,設(shè)切點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則斜率SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),切點(diǎn)為SKIPIF1<0,此時(shí)切線方程為SKIPIF1<0;當(dāng)SKIPIF1<0,切點(diǎn)為SKIPIF1<0,不滿足題意,綜上可得,切點(diǎn)為SKIPIF1<0.故答案為:SKIPIF1<0.3.已知SKIPIF1<0軸為曲線SKIPIF1<0的切線,則SKIPIF1<0的值為________.【答案】SKIPIF1<0【詳解】由題意SKIPIF1<0,設(shè)SKIPIF1<0軸與曲線SKIPIF1<0的切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.4.已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0將SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,故選D.5.已知直線SKIPIF1<0是曲線SKIPIF1<0的切線,則實(shí)數(shù)SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】設(shè)切點(diǎn)為SKIPIF1<0,∴切線方程是SKIPIF1<0,∴SKIPIF1<0,故答案為:C6.已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),曲線SKIPIF1<0在點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0處的切線總是平行時(shí),則由點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的切線的條數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.無法確定【答案】C【解析】詳解:由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0曲線SKIPIF1<0在點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0處的切線總是平行,SKIPIF1<0關(guān)于SKIPIF1<0對稱,即SKIPIF1<0,點(diǎn)SKIPIF1<0,即為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0切線的方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入切線方程可得SKIPIF1<0,化為SKIPIF1<0,設(shè)SKIPIF1<0SKIPIF1<0令SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,SKIPIF1<0在SKIPIF1<0處有極大值,在SKIPIF1<0處有極小值,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0與SKIPIF1<0有三個(gè)交點(diǎn),SKIPIF1<0方程SKIPIF1<0有三個(gè)根,即過SKIPIF1<0的切線有SKIPIF1<0條,故答案為SKIPIF1<0.7.若函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0有公切線,則實(shí)數(shù)SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【詳解】解:SKIPIF1<0,設(shè)公切線與曲線SKIPIF1<0相切的切點(diǎn)為SKIPIF1<0,

則公共切線為SKIPIF1<0,即SKIPIF1<0,其與SKIPIF1<0相切,聯(lián)立消去SKIPIF1<0得:SKIPIF1<0,則SKIPIF1<0有解,即SKIPIF1<0有解,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,則SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的最小值為SKIPIF1<0.故選:A.8.拋物線上的一動(dòng)點(diǎn)到直線距離的最小值是A. B. C. D.【答案】A【詳解】試題分析:對y=x2求導(dǎo)可求與直線x-y-1=0平行且與拋物線y=x2相切的切線方程,然后利用兩平行線的距離公司可得所求的最小距離d.解:(法一)對y=x2求導(dǎo)可得y′=2x,令y′=2x=1可得x=∴與直線x-y-1=0平行且與拋物線y=x2相切的切點(diǎn)(,),切線方程為y-=x-即x-y-=0由兩平行線的距離公司可得所求的最小距離d=,故選A.9.已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0【詳解】SKIPIF1<0可看成點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離,而點(diǎn)SKIPIF1<0的軌跡是直線SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡是曲線SKIPIF1<0,則所求最小值可轉(zhuǎn)化為曲線SKIPIF1<0上的點(diǎn)到直線SKIPIF1<0距離的最小值,而曲線SKIPIF1<0在直線SKIPIF1<0上方,平移直線SKIPIF1<0使其與曲線SKIPIF1<0相切,則切點(diǎn)到直線SKIPIF1<0距離即為所求,設(shè)切點(diǎn)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,切點(diǎn)為SKIPIF1<0則SKIPIF1<0到直線SKIPIF1<0距離SKIPIF1<0.故答案為:SKIPIF1<010.已知函數(shù)SKIPIF1<0,SKIPIF1<0,若存在SKIPIF1<0使得SKIPIF1<0,則實(shí)數(shù)a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0在SKIPIF1<0有交點(diǎn),分情況討論:①直線SKIPIF1<0過點(diǎn)SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0;②直線SKIPIF1<0與SKIPIF1<0相切,設(shè)切點(diǎn)為SKIPIF1<0,得SKIPIF1<0SKIPIF1<0SKIPIF1<0,切點(diǎn)為SKIPIF1<0,故實(shí)數(shù)a的取值范圍是SKIPIF1<0故選:B11.關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0內(nèi)有且僅有SKIPIF1<0個(gè)根,設(shè)最大的根是SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的大小關(guān)系是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.以上都不對【答案】C【詳解】由題意作出SKIPIF1<0與SKIPIF1<0在SKIPIF1<0的圖象,如圖所示:∵方程SKIPIF1<0在SKIPIF1<0內(nèi)有且僅有5個(gè)根,最大的根是SKIPIF1<0.∴SKIPIF1<0必是SKIPIF1<0與SKIPIF1<0在SKIPIF1<0內(nèi)相切時(shí)切點(diǎn)的橫坐標(biāo)設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,斜率SKIPIF1<0則SKIPIF1<0故選C.1.(2019·全國·高考真題(文))曲線y=2sinx+cosx在點(diǎn)(π,–1)處的切線方程為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上.SKIPIF1<0SKIPIF1<0則SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.故選C.2.(2016·四川·高考真題(文))設(shè)直線l1,l2分別是函數(shù)f(x)=SKIPIF1<0圖象上點(diǎn)P1,P-2處的切線,l1與l2垂直相交于點(diǎn)P,且l1,l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞)【答案】A【詳解】試題分析:設(shè)SKIPIF1<0(不妨設(shè)SKIPIF1<0),則由導(dǎo)數(shù)的幾何意義易得切線SKIPIF1<0的斜率分別為SKIPIF1<0由已知得SKIPIF1<0切線SKIPIF1<0的方程分別為SKIPIF1<0,切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.分別令SKIPIF1<0得SKIPIF1<0又SKIPIF1<0與SKIPIF1<0的交點(diǎn)為SKIPIF1<0,故選A.3.(2022·浙江·高考真題)設(shè)函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)已知SKIPIF1<0,曲線SKIPIF1<0上不同的三點(diǎn)SKIPIF1<0處的切線都經(jīng)過點(diǎn)SKIPIF1<0.證明:(?。┤鬝KIPIF1<0,則SKIPIF1<0;(ⅱ)若SKIPIF1<0,則SKIPIF1<0.(注:SKIPIF1<0是自然對數(shù)的底數(shù))【答案】(1)SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0.(2)(?。┮娊馕?;(ⅱ)見解析.【解答】(1)SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的減區(qū)間為SKIPIF1<0,SKIPIF1<0的增區(qū)間為SKIPIF1<0.(2)(?。┮?yàn)檫^SKIPIF1<0有三條不同的切線,設(shè)切點(diǎn)為SKIPIF1<0,故SKIPIF1<0,故方程SKIPIF1<0有3個(gè)不同的根,該方程可整理為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),因?yàn)镾KIPIF1<0有3個(gè)不同的零點(diǎn),故SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,整理得到:SKIPIF1<0且SKIPIF1<0,此時(shí)SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0上的減函數(shù),故SKIPIF1<0,故SKIPIF1<0.(ⅱ)當(dāng)SKIPIF1<0時(shí),同(ⅰ)中討論可得:故SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),不妨設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0有3個(gè)不同的零點(diǎn),故SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,整理得到:SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則方程SKIPIF1<0即為:SKIPIF1<0即為SKIPIF1<0,記SKIPIF1<0則SKIPIF1<0為SKIPIF1<0有三個(gè)不同的根,設(shè)SKIPIF1<0,SKIPIF1<0,要證:SKIPIF1<0,即證SKIPIF1<0,即證:SKIPIF1<0,即證:SKIPIF1<0,即證:SKIPIF1<0,而SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故即證:SKIPIF1<0,即證:SKIPIF1<0即證:SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為增函數(shù),故SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0為增函數(shù),故SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,故原不等式得證:4.(2021·全國·高考真題(理))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,且SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值為SKIPIF1<0.(1)求SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0是SKIPIF1<0的兩條切線,SKIPIF1<0是切點(diǎn),求SKIPIF1<0面積的最大值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)[方法一]:利用二次函數(shù)性質(zhì)求最小值由題意知,SKIPIF1<0,設(shè)圓M上的點(diǎn)SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0.從而有SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.又SKIPIF1<0,解之得SKIPIF1<0,因此SKIPIF1<0.[方法二]【最優(yōu)解】:利用圓的幾何意義求最小值拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值為SKIPIF1<0,解得SKIPIF1<0;(2)[方法一]:切點(diǎn)弦方程+韋達(dá)定義判別式求弦長求面積法拋物線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,對該函數(shù)求導(dǎo)得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,同理可知,直線SKIPIF1<0的方程為SKIPIF1<0,由于點(diǎn)SKIPIF1<0為這兩條直線的公共點(diǎn),則SKIPIF1<0,所以,點(diǎn)A、SKIPIF1<0的坐標(biāo)滿足方程SKIPIF1<0,所以,直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,由已知可得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的面積取最大值SKIPIF1<0.[方法二]【最優(yōu)解】:切點(diǎn)弦法+分割轉(zhuǎn)化求面積+三角換元求最值同方法一得到SKIPIF1<0.過P作y軸的平行線交SKIPIF1<0于Q,則SKIPIF1<0.SKIPIF1<0.P點(diǎn)在圓M上,則SKIPIF1<0SKIPIF1<0.故當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的面積最大,最大值為SKIPIF1<0.[方法三]:直接設(shè)直線AB方程法設(shè)切點(diǎn)A,B的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,聯(lián)立SKIPIF1<0和拋物線C的方程得SKIPIF1<0整理得SKIPIF1<0.判別式SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0.拋物線C的方程為SKIPIF1<0,即SKIPIF1<0,有SKIPIF1<0.則SKIPIF1<0,整理得SKIPIF1<0,同理可得SKIPIF1<0.聯(lián)立方程SKIPIF1<0可得點(diǎn)P的坐標(biāo)為SKIPIF1<0,即SKIPIF1<0.將點(diǎn)P的坐標(biāo)代入圓M的方程,得SKIPIF1<0,整理得SKIPIF1<0.由弦長公式得SKIPIF1<0SKIPIF1<0.點(diǎn)P到直線SKIPIF1<0的距離為SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.5.(2017·山東·高考真題(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0是自然對數(shù)的底數(shù).(Ⅰ)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(Ⅱ)令SKIPIF1<0,討論SKIPIF1<0的單調(diào)性并判斷有無極值,有極值時(shí)求出極值.【答案】(Ⅰ)SKIPIF1<0(Ⅱ)見解析【詳解】(Ⅰ)由題意SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,因此

曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即

SKIPIF1<0.(Ⅱ)由題意得

SKIPIF1<0,因?yàn)镾KIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因?yàn)镾KIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得極小值,極小值是SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增.所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得極大值.極大值為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取到極小值,極小值是SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,無極值;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得極大值,極大值是SKIPIF1<0;當(dāng)SKIPIF1<0時(shí)SKIPIF1<0取得極小值.極小值是SKIPIF1<0.綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,函數(shù)SKIPIF1<0有極小值,極小值是SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,函數(shù)SKIPIF1<0有極大值,也有極小值,極大值是SKIPIF1<0極小值是SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,無極值;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,函數(shù)SKIPIF1<0有極大值,也有極小值,極大值是SKIPIF1<0;極小值是SKIPIF1<0.6.(2019·全國·高考真題(理))已知函數(shù)SKIPIF1<0.(1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個(gè)零點(diǎn);(2)設(shè)x0是f(x)的一個(gè)零點(diǎn),證明曲線y=lnx在點(diǎn)A(x0,lnx0)處的切線也是曲線SKIPIF1<0的切線.【答案】(1)函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上是單調(diào)增函數(shù),證明見解析;(2)證明見解析.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上是單調(diào)增函數(shù);當(dāng)SKIPIF1<0,時(shí),SKIPIF1<0,而SKIPIF1<0,顯然當(dāng)SKIPIF1<0,函數(shù)SKIPIF1<0有零點(diǎn),而函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有唯一的零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0必有一零點(diǎn),而函數(shù)SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有唯一的零點(diǎn)綜上所述,函數(shù)SKIPIF1<0的定義域SKIPIF1<0內(nèi)有2個(gè)零點(diǎn);(2)因?yàn)镾KIPIF1<0是SKIPIF1<0的一個(gè)零點(diǎn),所以SKIPIF1<0SKIPIF1<0,所以曲線SKIPIF1<0在SKIPIF1<0處的切線SKIPIF1<0的斜率SKIPIF1<0,故曲線SKIPIF1<0在SKIPIF1<0處的切線SKIPIF1<0的方程為:SKIPIF1<0而SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0,它在縱軸的截距為SKIPIF1<0.設(shè)曲線SKIPIF1<0的切點(diǎn)為SKIPIF1<0,過切點(diǎn)為SKIPIF1<0切線SKIPIF1<0,SKIPIF1<0,所以在SKIPIF1<0處的切線SKIPIF1<0的斜率為SKIPIF1<0,因此切線SKIPIF1<0的方程為SKIPIF1<0,當(dāng)切線SKIPIF1<0的斜率SKIPIF1<0等于直線SKIPIF1<0的斜率SKIPIF1<0時(shí),即SKIPIF1<0,切線SKIPIF1<0在縱軸的截距為SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,直線SKIPIF1<0的斜率相等,在縱軸上的截距也相等,因此直線SKIPIF1<0重合,故曲線SKIPIF1<0在SKIPIF1<0處的切線也是曲線SKIPIF1<0的切線.7.(2010·湖北·高考真題(文))設(shè)函數(shù)SKIPIF1<0,其中a>0,曲線SKIPIF1<0在點(diǎn)P(0,SKIPIF1<0)處的切線方程為y=1(Ⅰ)確定b、c的值(Ⅱ)設(shè)曲線SKIPIF1<0在點(diǎn)(SKIPIF1<0)及(SKIPIF1<0)處的切線都過點(diǎn)(0,2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(Ⅲ)若過點(diǎn)(0,2)可作曲線SKIPIF1<0的三條不同切線,求a的取值范圍.【答案】(Ⅰ)b=0,c=1,(Ⅱ)見解析(Ⅲ)SKIPIF1<0.【詳解】(1)∵f(x)SKIPIF1<0x3SKIPIF1<0x2+bx+c,∴f(0)=c,f′(x)=x2﹣ax+b,f′(0)=b;又∵y=f(x)在點(diǎn)P(0,f(0))處的切線方程為y=1,∴f(0)=1,f′(0)=0.∴b=0,c=1.(2)∵b=0,c=1時(shí),SKIPIF1<0,f'(x)=x2﹣ax.由于點(diǎn)(t,f(t))處的切線方程為y﹣f(t)=f'(t)(x﹣t),而點(diǎn)(0,2)在切線上,∴2﹣f(t)=f'(t)(﹣t),化簡得SKIPIF1<0,即t滿足的方程為SKIPIF1<0.下面用反證法證明.假設(shè)f'(x1)=f'(x2),由于曲線y=f(x)在點(diǎn)(x1,f(x1))及(x2,f(x2))處的切線都過點(diǎn)(0,2),則下列等式成立:SKIPIF1<0;由③得x1+x2=a,由①﹣②得SKIPIF1<0x1x2SKIPIF1<0a2④;又SKIPIF1<0x1x2SKIPIF1<0x1x2=a2﹣x1(a﹣x1)SKIPIF1<0ax1+a2SKIPIF1<0a2SKIPIF1<0a2∴由④得x1SKIPIF1<0,此時(shí)x2SKIPIF1<0,這與x1≠x2矛盾,∴f′(x1)≠f′(x2).(3)由(2)知,過點(diǎn)(0,2)可作y=f(x)的三條切線,等價(jià)于方程2﹣f(t)=f'(t)(0﹣t)有三個(gè)相異的實(shí)根,即等價(jià)于方程SKIPIF1<0有三個(gè)相異的實(shí)根;設(shè)g(t)SKIPIF1<0t3SKIPIF1<0t2+1,∴g′(t)=2t2﹣at=2t(tSKIPIF1<0);∵a>0,∴有t(﹣∞,0)0SKIPIF1<0SKIPIF1<0SKIPIF1<0g'(t)+0﹣0+g(t)↗極大值1↘極小值SKIPIF1<0↗由g(t)的單調(diào)性知:要使g(t)=0有三個(gè)相異的實(shí)根,當(dāng)且僅當(dāng)SKIPIF1<00,即SKIPIF1<0.∴a的取值范圍是SKIPIF1<0.8.(2011·陜西·高考真題(理))如圖,從點(diǎn)SKIPIF1<0作SKIPIF1<0軸的垂線交曲線SKIPIF1<0于點(diǎn)SKIPIF1<0,曲線在SKIPIF1<0點(diǎn)處的切線與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,再從SKIPIF1<0作SKIPIF1<0軸的垂線交曲線于點(diǎn)SKIPIF1<0,依次重復(fù)上述過程得到一系列點(diǎn):SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0;SKIPIF1<0;SKIPIF1<0,SKIPIF1<0記SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0(SKIPIF1<0)(1)試求SKIPIF1<0與SKIPIF1<0的關(guān)系(SKIPIF1<0)(2)求SKIPIF1<0【答案】(1)SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0【詳解】(1)設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0(SKIPIF1<0).(2)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,于是有SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0SKIPIF1<0.9.(2015·天津·高考真題(理))已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(Ⅰ)討論SKIPIF1<0的單調(diào)性;(Ⅱ)設(shè)曲線SKIPIF1<0與SKIPIF1<0軸正半軸的交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為SKIPIF1<0,求證:對于任意的正實(shí)數(shù)SKIPIF1<0,都有SKIPIF1<0;(Ⅲ)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)正實(shí)根SKIPIF1<0,求證:SKIPIF1<0【答案】(Ⅰ)當(dāng)SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論