




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
《金版教程(物理)》2025高考科學(xué)復(fù)習(xí)解決方案第五章萬(wàn)有引力與宇宙航行《金版教程(物理)》2025高考科學(xué)復(fù)習(xí)解決方案第五章萬(wàn)有引力與宇宙航行第講萬(wàn)有引力定律及其應(yīng)用[教材閱讀指導(dǎo)](對(duì)應(yīng)人教版必修第二冊(cè)相關(guān)內(nèi)容及問(wèn)題)第七章第1節(jié)閱讀“開(kāi)普勒定律”的有關(guān)內(nèi)容,寫(xiě)出開(kāi)普勒行星運(yùn)動(dòng)定律的表述。提示:開(kāi)普勒第一定律:所有行星繞太陽(yáng)運(yùn)動(dòng)的軌道都是橢圓,太陽(yáng)處在橢圓的一個(gè)焦點(diǎn)上。開(kāi)普勒第二定律:對(duì)任意一個(gè)行星來(lái)說(shuō),它與太陽(yáng)的連線在相等的時(shí)間內(nèi)掃過(guò)的面積相等。開(kāi)普勒第三定律:所有行星軌道的半長(zhǎng)軸的三次方跟它的公轉(zhuǎn)周期的二次方的比都相等。第七章第1節(jié)閱讀“行星軌道簡(jiǎn)化為圓軌道”的有關(guān)內(nèi)容,寫(xiě)出對(duì)行星運(yùn)動(dòng)軌道簡(jiǎn)化為圓軌道后的開(kāi)普勒三個(gè)定律的表述。提示:(1)行星繞太陽(yáng)運(yùn)動(dòng)的軌道十分接近圓,太陽(yáng)處在圓心。(2)對(duì)某一行星來(lái)說(shuō),它繞太陽(yáng)做圓周運(yùn)動(dòng)的角速度(或線速度)大小不變,即行星做勻速圓周運(yùn)動(dòng)。(3)所有行星軌道半徑r的三次方跟它的公轉(zhuǎn)周期T的二次方的比值都相等,即eq\f(r3,T2)=k。第七章第1節(jié)[練習(xí)與應(yīng)用]T2。提示:近地點(diǎn)的速度較大。第七章第2節(jié)閱讀“行星與太陽(yáng)間的引力”這一部分內(nèi)容,太陽(yáng)與行星間引力的公式是依據(jù)什么推導(dǎo)出來(lái)的?提示:依據(jù)開(kāi)普勒行星運(yùn)動(dòng)定律和圓周運(yùn)動(dòng)向心力公式及牛頓第三定律推導(dǎo)出來(lái)的。第七章第2節(jié)閱讀“月—地檢驗(yàn)”這一部分內(nèi)容,什么是月—地檢驗(yàn)?提示:地面物體所受地球的引力、月球所受地球的引力,與太陽(yáng)、行星間的引力遵從相同的規(guī)律。第七章第2節(jié)閱讀“引力常量”這部分內(nèi)容及后面的[拓展學(xué)習(xí)],引力常量是如何測(cè)得的?數(shù)值為多少?提示:英國(guó)物理學(xué)家卡文迪什利用扭秤裝置測(cè)得G=6.67×10-11N·m2/kg2。第七章第3節(jié),萬(wàn)有引力理論的成就有哪些?提示:“稱(chēng)量”地球的質(zhì)量、計(jì)算天體的質(zhì)量、發(fā)現(xiàn)未知天體、預(yù)言哈雷彗星回歸。第七章[復(fù)習(xí)與提高]B組T2;T3。提示:T2:將行星看作球體,設(shè)半徑為R,質(zhì)量為m星,則行星的密度為ρ=eq\f(m星,V)=eq\f(m星,\f(4πR3,3))。衛(wèi)星貼近行星表面運(yùn)行時(shí),運(yùn)動(dòng)半徑為R,由萬(wàn)有引力提供向心力可知eq\f(Gm星m,R2)=meq\f(4π2,T2)R,即m星=eq\f(4π2R3,GT2)。由此可以解得ρT2=eq\f(3π,G),式中G為引力常量,可見(jiàn)ρT2是一個(gè)對(duì)任何行星都相同的常數(shù)。溫馨提示:當(dāng)衛(wèi)星貼著行星表面飛行時(shí),只要有一個(gè)計(jì)時(shí)工具就可以知道行星的密度。T3:eq\f(7Gmm′,36R2)。質(zhì)量分布均勻的球體之間的萬(wàn)有引力可以等效為質(zhì)量集中在兩球心的兩個(gè)質(zhì)點(diǎn)之間的萬(wàn)有引力,直接代公式可求。本題采用先填補(bǔ)成完整的球體,再減去補(bǔ)上的小球部分產(chǎn)生的引力的方法來(lái)求解。必備知識(shí)梳理與回顧一、開(kāi)普勒定律1.定律內(nèi)容(1)開(kāi)普勒第一定律:所有行星繞太陽(yáng)運(yùn)動(dòng)的軌道都是eq\x(\s\up1(01))橢圓,太陽(yáng)處在橢圓的一個(gè)eq\x(\s\up1(02))焦點(diǎn)上。(2)開(kāi)普勒第二定律:對(duì)任意一個(gè)行星來(lái)說(shuō),它與太陽(yáng)的連線在相等的時(shí)間內(nèi)掃過(guò)的eq\x(\s\up1(03))面積相等。(3)開(kāi)普勒第三定律:所有行星軌道的eq\x(\s\up1(04))半長(zhǎng)軸的三次方跟它的eq\x(\s\up1(05))公轉(zhuǎn)周期的二次方的比都相等,即eq\x(\s\up1(06))eq\f(a3,T2)=k。2.適用條件:適用于宇宙中一切環(huán)繞同一中心天體的運(yùn)動(dòng)。二、萬(wàn)有引力定律及應(yīng)用1.內(nèi)容:自然界中任何兩個(gè)物體都相互吸引,引力的方向在它們的連線上,引力的大小與eq\x(\s\up1(01))物體的質(zhì)量m1和m2的乘積成正比,與eq\x(\s\up1(02))它們之間距離r的二次方成反比。2.公式:F=eq\x(\s\up1(03))Geq\f(m1m2,r2),其中G叫作引力常量,G=6.67×10-11N·m2/kg2,其值由卡文迪什通過(guò)扭秤實(shí)驗(yàn)測(cè)得。3.公式的適用條件:計(jì)算兩個(gè)eq\x(\s\up1(04))質(zhì)點(diǎn)間的萬(wàn)有引力。4.萬(wàn)有引力理論的主要成就(1)發(fā)現(xiàn)未知天體。(2)計(jì)算天體質(zhì)量。一、堵點(diǎn)疏通1.只有天體之間才存在萬(wàn)有引力。()2.行星在橢圓軌道上的運(yùn)行速率是變化的,離太陽(yáng)越遠(yuǎn),運(yùn)行速率越小。()答案1.×2.√二、對(duì)點(diǎn)激活1.關(guān)于萬(wàn)有引力公式F=Geq\f(m1m2,r2),以下說(shuō)法中正確的是()A.公式只適用于星球之間的引力計(jì)算,不適用于質(zhì)量較小的物體B.當(dāng)兩物體間的距離趨近于0時(shí),萬(wàn)有引力趨近于無(wú)窮大C.兩物體間的萬(wàn)有引力也遵從牛頓第三定律D.公式中引力常量G的值是牛頓規(guī)定的答案C解析萬(wàn)有引力公式F=Geq\f(m1m2,r2)適用于質(zhì)點(diǎn)或均勻球體間引力的計(jì)算,當(dāng)兩物體間距離趨近于0時(shí),兩個(gè)物體就不能看作質(zhì)點(diǎn),故F=Geq\f(m1m2,r2)已不再適用,所以不能說(shuō)萬(wàn)有引力趨近于無(wú)窮大,故A、B錯(cuò)誤;兩物體間的萬(wàn)有引力也遵從牛頓第三定律,C正確;G的值是卡文迪什通過(guò)扭秤實(shí)驗(yàn)測(cè)得的,D錯(cuò)誤。2.(人教版必修第二冊(cè)·第七章第3節(jié)[練習(xí)與應(yīng)用]T4節(jié)選)地球的公轉(zhuǎn)軌道接近圓,但彗星的運(yùn)動(dòng)軌道則是一個(gè)非常扁的橢圓,如圖所示,天文學(xué)家哈雷成功預(yù)言哈雷彗星的回歸,哈雷彗星最近出現(xiàn)的時(shí)間是1986年,預(yù)測(cè)下次飛近地球?qū)⒃?061年左右。請(qǐng)根據(jù)開(kāi)普勒行星運(yùn)動(dòng)定律估算哈雷彗星軌道的半長(zhǎng)軸是地球公轉(zhuǎn)半徑的多少倍。答案17.8解析設(shè)地球繞太陽(yáng)公轉(zhuǎn)的軌道半徑為R0,周期為T(mén)0,哈雷彗星繞太陽(yáng)公轉(zhuǎn)的軌道半長(zhǎng)軸為a,周期為T(mén),由題意可知T=2061年-1986年=75年,根據(jù)開(kāi)普勒第三定律eq\f(a3,T2)=k,有eq\f(a3,T2)=eq\f(Req\o\al(3,0),Teq\o\al(2,0)),則eq\f(a,R0)=eq\r(3,\f(T2,Teq\o\al(2,0)))≈17.8。關(guān)鍵能力發(fā)展與提升考點(diǎn)一開(kāi)普勒定律的理解與應(yīng)用深化理解1.微元法解讀開(kāi)普勒第二定律:行星在近日點(diǎn)、遠(yuǎn)日點(diǎn)時(shí)的速度方向與兩點(diǎn)連線垂直,若行星在近日點(diǎn)、遠(yuǎn)日點(diǎn)到太陽(yáng)的距離分別為a、b,取足夠短的時(shí)間Δt,則行星在Δt時(shí)間內(nèi)的運(yùn)動(dòng)可看作勻速直線運(yùn)動(dòng),由Sa=Sb知eq\f(1,2)va·Δt·a=eq\f(1,2)vb·Δt·b,可得va=eq\f(vbb,a)。行星到太陽(yáng)的距離越大,行星的速率越小,反之越大。2.行星繞太陽(yáng)的運(yùn)動(dòng)通常按勻速圓周運(yùn)動(dòng)處理。3.開(kāi)普勒行星運(yùn)動(dòng)定律也適用于其他天體,例如月球、衛(wèi)星繞地球的運(yùn)動(dòng)。4.開(kāi)普勒第三定律eq\f(a3,T2)=k中,k值只與中心天體的質(zhì)量有關(guān),不同的中心天體k值不同,故該定律只能用在繞同一中心天體公轉(zhuǎn)的兩星體之間。例1(多選)如圖,海王星繞太陽(yáng)沿橢圓軌道運(yùn)動(dòng),P為近日點(diǎn),Q為遠(yuǎn)日點(diǎn),M、N為軌道短軸的兩個(gè)端點(diǎn),運(yùn)行的周期為T(mén)0。若只考慮海王星和太陽(yáng)之間的相互作用,則海王星在從P經(jīng)M、Q到N的運(yùn)動(dòng)過(guò)程中()A.從P到M所用的時(shí)間等于eq\f(T0,4)B.從Q到N階段,機(jī)械能逐漸變大C.從P到Q階段,速率逐漸變小D.從M到N階段,萬(wàn)有引力對(duì)它先做負(fù)功后做正功[答案]CD[解析]由開(kāi)普勒第二定律可知,相等時(shí)間內(nèi),太陽(yáng)與海王星連線掃過(guò)的面積都相等,A錯(cuò)誤;由機(jī)械能守恒定律知,從Q到N階段,除萬(wàn)有引力做功之外,沒(méi)有其他的力對(duì)海王星做功,故機(jī)械能守恒,B錯(cuò)誤;從P到Q階段,萬(wàn)有引力做負(fù)功,動(dòng)能轉(zhuǎn)化成海王星的勢(shì)能,所以動(dòng)能減小,速率逐漸變小,C正確;從M到N階段,萬(wàn)有引力與速度的夾角先是鈍角后是銳角,即萬(wàn)有引力對(duì)它先做負(fù)功后做正功,D正確。繞太陽(yáng)沿橢圓軌道運(yùn)行的行星越靠近近日點(diǎn)線速度越大,在近日點(diǎn)線速度最大。例2(2021·全國(guó)甲卷)2021年2月,執(zhí)行我國(guó)火星探測(cè)任務(wù)的“天問(wèn)一號(hào)”探測(cè)器在成功實(shí)施三次近火制動(dòng)后,進(jìn)入運(yùn)行周期約為1.8×105s的橢圓形停泊軌道,軌道與火星表面的最近距離約為2.8×105m。已知火星半徑約為3.4×106m,火星表面處自由落體的加速度大小約為3.7m/s2,則“天問(wèn)一號(hào)”的停泊軌道與火星表面的最遠(yuǎn)距離約為()A.6×105m B.6×106mC.6×107m D.6×108m[答案]C[解析]設(shè)沿火星表面運(yùn)動(dòng)的衛(wèi)星的繞行周期為T(mén)0,則有Geq\f(Mm,R2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T0)))eq\s\up12(2)R,在火星表面處有eq\f(GMm,R2)=mg,聯(lián)立可得T0=2πeq\r(\f(R,g));設(shè)“天問(wèn)一號(hào)”的停泊軌道與火星表面的最近距離為d1,最遠(yuǎn)距離為d2,則停泊軌道的半長(zhǎng)軸為a=eq\f(d1+d2+2R,2),由開(kāi)普勒第三定律可知eq\f(a3,T2)=eq\f(R3,Teq\o\al(2,0)),由以上各式聯(lián)立,可得d2=2eq\r(3,\f(gR2T2,4π2))-d1-2R≈6×107m,故C正確。考點(diǎn)二萬(wàn)有引力定律及其應(yīng)用拓展延伸1.萬(wàn)有引力的“兩點(diǎn)理解”和“三個(gè)推論”(1)兩點(diǎn)理解①兩物體相互作用的萬(wàn)有引力是一對(duì)作用力和反作用力。②萬(wàn)有引力定律的表達(dá)式F=Geq\f(m1m2,r2)適用于計(jì)算質(zhì)點(diǎn)間的萬(wàn)有引力。當(dāng)物體不能看成質(zhì)點(diǎn)時(shí),可以把物體分成若干部分,求出兩物體每部分之間的萬(wàn)有引力,然后矢量求和計(jì)算它們的合力。(2)三個(gè)推論①推論1:兩個(gè)質(zhì)量分布均勻的球體之間的萬(wàn)有引力,等于位于兩球心處、質(zhì)量分別與兩球體相等的質(zhì)點(diǎn)間的萬(wàn)有引力。②推論2:在勻質(zhì)球殼的空腔內(nèi)任意位置處,質(zhì)點(diǎn)受到球殼的萬(wàn)有引力的合力為零,即∑F引=0。③推論3:在勻質(zhì)球體內(nèi)部距離球心r處的質(zhì)點(diǎn)(m)受到的球體其他部分物質(zhì)的萬(wàn)有引力,等于球體內(nèi)半徑為r的同心球體(M′)對(duì)其的萬(wàn)有引力,即F=Geq\f(M′m,r2)。2.萬(wàn)有引力與重力的關(guān)系地球?qū)ξ矬w的萬(wàn)有引力F可分解為:重力mg、提供物體隨地球自轉(zhuǎn)的向心力F向。(1)在赤道上:Geq\f(Mm,R2)=mg1+mω2R。(2)在兩極上:Geq\f(Mm,R2)=mg0。(3)在一般位置:萬(wàn)有引力Geq\f(Mm,R2)等于重力mg與向心力F向的矢量和。越靠近南、北兩極,向心力越小,g值越大。由于物體隨地球自轉(zhuǎn)所需的向心力較小,通??烧J(rèn)為萬(wàn)有引力近似等于重力,即eq\f(GMm,R2)=mg。3.星體表面及上空的重力加速度(以地球?yàn)槔?(1)地球表面的重力加速度g(不考慮地球自轉(zhuǎn)的影響):由eq\f(GMm,R2)=mg,得g=eq\f(GM,R2)。(2)地球上空的重力加速度設(shè)地球上空距離地心r=R+h處的重力加速度為g′,則mg′=eq\f(GMm,(R+h)2),得g′=eq\f(GM,(R+h)2),所以eq\f(g,g′)=eq\f((R+h)2,R2)??枷?萬(wàn)有引力定律的應(yīng)用例3(2020·全國(guó)卷Ⅰ)火星的質(zhì)量約為地球質(zhì)量的eq\f(1,10),半徑約為地球半徑的eq\f(1,2),則同一物體在火星表面與在地球表面受到的引力的比值約為()A.0.2 B.0.4C.2.0 D.2.5[答案]B[解析]設(shè)該物體質(zhì)量為m,則在火星表面有F火=Geq\f(M火m,Req\o\al(2,火)),在地球表面有F地=Geq\f(M地m,Req\o\al(2,地)),由題意知eq\f(M火,M地)=eq\f(1,10),eq\f(R火,R地)=eq\f(1,2)。聯(lián)立以上各式可得eq\f(F火,F地)=eq\f(M火,M地)·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(R地,R火)))eq\s\up12(2)=eq\f(1,10)×eq\f(4,1)=0.4,故B正確。例4(2022·全國(guó)乙卷)2022年3月,中國(guó)航天員翟志剛、王亞平、葉光富在離地球表面約400km的“天宮二號(hào)”空間站上通過(guò)天地連線,為同學(xué)們上了一堂精彩的科學(xué)課。通過(guò)直播畫(huà)面可以看到,在近地圓軌道上飛行的“天宮二號(hào)”中,航天員可以自由地漂浮,這表明他們()A.所受地球引力的大小近似為零B.所受地球引力與飛船對(duì)其作用力兩者的合力近似為零C.所受地球引力的大小與其隨飛船運(yùn)動(dòng)所需向心力的大小近似相等D.在地球表面上所受引力的大小小于其隨飛船運(yùn)動(dòng)所需向心力的大小[答案]C[解析]航天員在空間站中可以自由地漂浮,表明飛船對(duì)其作用力幾乎等于零,航天員隨飛船做圓周運(yùn)動(dòng)的向心力完全由所受地球引力提供,故A、B錯(cuò)誤,C正確;根據(jù)萬(wàn)有引力公式F=Geq\f(Mm,r2),可知在地球表面上所受地球引力的大小大于在飛船上所受地球引力的大小,因此在地球表面所受引力的大小大于其隨飛船運(yùn)動(dòng)所需向心力的大小,故D錯(cuò)誤。例5理論上已經(jīng)證明:質(zhì)量分布均勻的球殼對(duì)殼內(nèi)物體的萬(wàn)有引力為零?,F(xiàn)假設(shè)地球是一半徑為R、質(zhì)量分布均勻的實(shí)心球體,O為球心,以O(shè)為原點(diǎn)建立坐標(biāo)軸Ox,如圖所示。一個(gè)質(zhì)量一定的質(zhì)點(diǎn)(假設(shè)它能夠在地球內(nèi)部移動(dòng))在x軸上各位置受到的引力大小用F表示,則F隨x的變化關(guān)系圖像正確的是()[答案]A[解析]根據(jù)題意,質(zhì)量分布均勻的球殼對(duì)殼內(nèi)物體的引力為零,當(dāng)質(zhì)點(diǎn)在地球的內(nèi)部離球心x處時(shí),受到地球的萬(wàn)有引力即為半徑等于x的同心球體對(duì)質(zhì)點(diǎn)的萬(wàn)有引力,所以F=Geq\f(ρ·\f(4πx3,3)·m,x2)=Geq\f(\a\vs4\al(4πρm),3)x,其中ρ為地球的密度,m為質(zhì)點(diǎn)的質(zhì)量;當(dāng)質(zhì)點(diǎn)在地球球面或球面以外,離球心x處時(shí),地球可以看成質(zhì)量集中于球心的質(zhì)點(diǎn),對(duì)質(zhì)點(diǎn)的萬(wàn)有引力F=Geq\f(Mm,x2),其中M為地球的質(zhì)量。綜上所述,當(dāng)x<R時(shí),F(xiàn)與x成正比,當(dāng)x≥R后,F(xiàn)與x的平方成反比,所以A正確??枷?萬(wàn)有引力與重力的關(guān)系例6某行星為質(zhì)量分布均勻的球體,半徑為R、質(zhì)量為M。科研人員研究同一物體在該行星上的重力時(shí),發(fā)現(xiàn)物體在“兩極”處的重力為“赤道”上某處重力的1.1倍。已知引力常量為G,則該行星自轉(zhuǎn)的角速度為()A.eq\r(\f(GM,10R3)) B.eq\r(\f(GM,11R3))C.eq\r(\f(1.1GM,R3)) D.eq\r(\f(GM,R3))[答案]B[解析]設(shè)該行星“赤道”上某處的重力加速度大小為g,該行星自轉(zhuǎn)的角速度為ω,物體的質(zhì)量為m,物體在“兩極”處所受行星的萬(wàn)有引力大小等于重力大小,即Geq\f(Mm,R2)=1.1mg,物體在“赤道”上某處時(shí)所受行星的萬(wàn)有引力大小等于重力和物體隨行星轉(zhuǎn)動(dòng)所需的向心力的合力大小,即Geq\f(Mm,R2)=mg+mω2R,聯(lián)立解得ω=eq\r(\f(GM,11R3)),故選B。考向3星體表面及上空的重力加速度例7(2023·浙江省溫州市高三下第二次適應(yīng)性考試)《流浪地球2》影片中,太空電梯高聳入云,在地表與太空間高速穿梭。太空電梯上升到某高度時(shí),質(zhì)量為2.5kg的物體重力為16N。已知地球半徑為6371km,不考慮地球自轉(zhuǎn),則此時(shí)太空電梯距離地面的高度約為()A.1593km B.3584kmC.7964km D.9955km[答案]A[解析]設(shè)地球的質(zhì)量為M,此時(shí)太空電梯距離地面的高度為h,太空電梯所在位置處的重力加速度為g′,不考慮地球自轉(zhuǎn),則物體所受重力等于地球的引力,根據(jù)萬(wàn)有引力公式,物體在地球表面時(shí),有Geq\f(Mm,R2)=mg,物體在太空電梯中距地面h高度處,有Geq\f(Mm,(R+h)2)=mg′,兩式相比可得eq\f(R2,(R+h)2)=eq\f(mg′,mg),由題意知,mg′=16N,又mg=2.5×10N=25N,解得h=eq\f(1,4)R=1593km,故選A。考點(diǎn)三天體質(zhì)量和密度的估算拓展延伸1.重力加速度法:利用天體表面的重力加速度g和天體半徑R。(1)由Geq\f(Mm,R2)=mg得天體質(zhì)量M=eq\f(gR2,G)。(2)天體密度ρ=eq\f(M,V)=eq\f(M,\f(4,3)πR3)=eq\f(3g,4πGR)。2.天體環(huán)繞法:測(cè)出衛(wèi)星繞天體做勻速圓周運(yùn)動(dòng)的半徑r和周期T。(1)由Geq\f(Mm,r2)=meq\f(4π2r,T2)得天體的質(zhì)量M=eq\f(4π2r3,GT2)。(2)若已知天體的半徑R,則天體的密度ρ=eq\f(M,V)=eq\f(M,\f(4,3)πR3)=eq\f(3πr3,GT2R3)。(3)若衛(wèi)星繞天體表面運(yùn)行,可認(rèn)為軌道半徑r等于天體半徑R,則天體密度ρ=eq\f(3π,GT2),可見(jiàn),只要測(cè)出衛(wèi)星環(huán)繞天體表面運(yùn)動(dòng)的周期T,就可估算出中心天體的密度。注:若已知的量不是r、T,而是r、v或v、T等,計(jì)算中心天體質(zhì)量和密度的思路相同。若已知r、v,利用Geq\f(Mm,r2)=meq\f(v2,r)得M=eq\f(v2r,G)。若已知v、T,可先求出r=eq\f(vT,2π),再利用Geq\f(Mm,r2)=meq\f(v2,r)或Geq\f(Mm,r2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))eq\s\up12(2)r求M。若已知ω、T則不能求出M??枷?利用“重力加速度法”計(jì)算天體的質(zhì)量和密度例8宇航員在月球表面將一片羽毛和一個(gè)鐵錘從同一高度由靜止同時(shí)釋放,二者幾乎同時(shí)落地。若羽毛和鐵錘是從高度為h處開(kāi)始下落,經(jīng)時(shí)間t落到月球表面。已知引力常量為G,月球的半徑為R(不考慮月球自轉(zhuǎn)的影響)。求:(1)月球表面的自由落體加速度大小g月;(2)月球的質(zhì)量M;(3)月球的密度ρ。[答案](1)eq\f(2h,t2)(2)eq\f(2hR2,Gt2)(3)eq\f(3h,2πRGt2)[解析](1)羽毛和鐵錘在月球表面附近做自由落體運(yùn)動(dòng),有h=eq\f(1,2)g月t2解得g月=eq\f(2h,t2)。(2)不考慮月球自轉(zhuǎn)的影響,對(duì)在月球表面上質(zhì)量為m的物體,有Geq\f(Mm,R2)=mg月解得M=eq\f(2hR2,Gt2)。(3)假設(shè)月球?yàn)榫鶆蚯蝮w,則其體積V=eq\f(4,3)πR3根據(jù)密度公式可知,ρ=eq\f(M,V)解得ρ=eq\f(3h,2πRGt2)??枷?利用環(huán)繞法估算天體的質(zhì)量和密度例9(2021·廣東高考)2021年4月,我國(guó)自主研發(fā)的空間站“天和”核心艙成功發(fā)射并入軌運(yùn)行。若核心艙繞地球的運(yùn)行可視為勻速圓周運(yùn)動(dòng),已知引力常量,由下列物理量能計(jì)算出地球質(zhì)量的是()A.核心艙的質(zhì)量和繞地半徑B.核心艙的質(zhì)量和繞地周期C.核心艙的繞地角速度和繞地周期D.核心艙的繞地線速度和繞地半徑[答案]D[解析]根據(jù)核心艙做圓周運(yùn)動(dòng)的向心力由地球的萬(wàn)有引力提供,可得Geq\f(Mm,r2)=meq\f(v2,r)=mω2r=meq\f(4π2,T2)r,則M=eq\f(v2r,G)=eq\f(ω2r3,G)=eq\f(4π2r3,GT2),可知要計(jì)算地球的質(zhì)量M,除引力常量G外,還要知道核心艙的繞地半徑r及繞地線速度v、繞地角速度ω或繞地周期T中的一個(gè)。所以若已知核心艙的質(zhì)量和繞地半徑或已知核心艙的質(zhì)量和繞地周期,都不能計(jì)算出地球的質(zhì)量;若已知核心艙的繞地角速度和繞地周期,不能計(jì)算出核心艙的繞地半徑,也不能計(jì)算出地球的質(zhì)量;若已知核心艙的繞地線速度和繞地半徑,可由M=eq\f(v2r,G)計(jì)算出地球的質(zhì)量。故D正確,A、B、C錯(cuò)誤。例10(2021·全國(guó)乙卷)科學(xué)家對(duì)銀河系中心附近的恒星S2進(jìn)行了多年的持續(xù)觀測(cè),給出1994年到2002年間S2的位置如圖所示。科學(xué)家認(rèn)為S2的運(yùn)動(dòng)軌跡是半長(zhǎng)軸約為1000AU(太陽(yáng)到地球的距離為1AU)的橢圓,銀河系中心可能存在超大質(zhì)量黑洞。這項(xiàng)研究工作獲得了2020年諾貝爾物理學(xué)獎(jiǎng)。若認(rèn)為S2所受的作用力主要為該大質(zhì)量黑洞的引力,設(shè)太陽(yáng)的質(zhì)量為M,可以推測(cè)出該黑洞質(zhì)量約為()A.4×104M B.4×106MC.4×108M D.4×1010M[答案]B[解析]設(shè)中心天體的質(zhì)量為M中,繞中心天體做勻速圓周運(yùn)動(dòng)的環(huán)繞天體的質(zhì)量為m,軌道半徑為r,周期為T(mén),由萬(wàn)有引力提供向心力有Geq\f(M中m,r2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))eq\s\up12(2)r,解得M中=eq\f(4π2r3,GT2)。由開(kāi)普勒第三定律知,繞該黑洞做勻速圓周運(yùn)動(dòng)的軌道半徑為1000AU的環(huán)繞天體的公轉(zhuǎn)周期與S2的公轉(zhuǎn)周期相同,為T(mén)=2×(2002年-1994年)=16年,根據(jù)M中=eq\f(4π2r3,GT2),則eq\f(M黑洞,M)=eq\f((1000AU)3,(1AU)3)×eq\f((1年)2,(16年)2)≈4×106,即M黑洞≈4×106M,故選B。例11(2023·遼寧高考)在地球上觀察,月球和太陽(yáng)的角直徑(直徑對(duì)應(yīng)的張角)近似相等,如圖所示。若月球繞地球運(yùn)動(dòng)的周期為T(mén)1,地球繞太陽(yáng)運(yùn)動(dòng)的周期為T(mén)2,地球半徑是月球半徑的k倍,則地球與太陽(yáng)的平均密度之比約為()A.k3eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(T1,T2)))eq\s\up12(2) B.k3eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(T2,T1)))eq\s\up12(2)C.eq\f(1,k3)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(T1,T2)))eq\s\up12(2) D.eq\f(1,k3)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(T2,T1)))eq\s\up12(2)[答案]D[解析]設(shè)月球繞地球運(yùn)動(dòng)的軌道半徑為r1,地球繞太陽(yáng)運(yùn)動(dòng)的軌道半徑為r2,根據(jù)萬(wàn)有引力提供向心力,可得Geq\f(m地m月,req\o\al(2,1))=m月eq\f(4π2,Teq\o\al(2,1))r1,Geq\f(m地m日,req\o\al(2,2))=m地eq\f(4π2,Teq\o\al(2,2))r2,由題圖中幾何關(guān)系可知eq\f(r1,r2)=eq\f(R月,R日),由題意可知R地=kR月,又地球的平均密度ρ地=eq\f(m地,\f(4,3)πReq\o\al(3,地)),太陽(yáng)的平均密度ρ日=eq\f(m日,\f(4,3)πReq\o\al(3,日)),聯(lián)立可得eq\f(ρ地,ρ日)=eq\f(1,k3)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(T2,T1)))eq\s\up12(2),故選D。估算天體質(zhì)量和密度時(shí)應(yīng)注意的問(wèn)題(1)利用萬(wàn)有引力提供天體做圓周運(yùn)動(dòng)的向心力估算天體質(zhì)量時(shí),估算的是中心天體的質(zhì)量,并非環(huán)繞天體的質(zhì)量。(2)區(qū)別天體半徑R和衛(wèi)星軌道半徑r,只有在天體表面附近運(yùn)動(dòng)的衛(wèi)星才有r≈R;計(jì)算天體密度時(shí),V=eq\f(4,3)πR3中的R只能是中心天體的半徑。(3)在考慮中心天體自轉(zhuǎn)問(wèn)題時(shí),只有在兩極處才有eq\f(GMm,R2)=mg?!靖M(jìn)訓(xùn)練】1.利用引力常量G和下列某一組數(shù)據(jù),不能計(jì)算出地球質(zhì)量的是()A.地球的半徑及重力加速度(不考慮地球自轉(zhuǎn))B.人造衛(wèi)星在地面附近繞地球做圓周運(yùn)動(dòng)的速度及周期C.月球繞地球做圓周運(yùn)動(dòng)的周期及月球與地球間的距離D.地球繞太陽(yáng)做圓周運(yùn)動(dòng)的周期及地球與太陽(yáng)間的距離答案D解析根據(jù)Geq\f(Mm,R2)=mg可知,已知地球的半徑及重力加速度可計(jì)算出地球的質(zhì)量,A能;根據(jù)Geq\f(Mm,R2)=meq\f(v2,R)及v=eq\f(2πR,T)可知,已知人造衛(wèi)星在地面附近繞地球做圓周運(yùn)動(dòng)的速度及周期可計(jì)算出地球的質(zhì)量,B能;根據(jù)Geq\f(Mm,r2)=meq\f(4π2,T2)r可知,已知月球繞地球做圓周運(yùn)動(dòng)的周期及月球與地球間的距離,可計(jì)算出地球的質(zhì)量,C能;已知地球繞太陽(yáng)做圓周運(yùn)動(dòng)的周期及地球與太陽(yáng)間的距離只能求出太陽(yáng)的質(zhì)量,不能求出地球的質(zhì)量,D不能。2.(2022·山東省濟(jì)寧市高三下二模)某興趣小組想利用小孔成像實(shí)驗(yàn)估測(cè)太陽(yáng)的密度。設(shè)計(jì)如圖所示的裝置,不透明的圓桶一端密封,中央有一小孔,另一端為半透明紙。將圓桶軸線正對(duì)太陽(yáng)方向,可觀察到太陽(yáng)的像的直徑為d。已知圓桶長(zhǎng)為L(zhǎng),地球繞太陽(yáng)公轉(zhuǎn)周期為T(mén)。估測(cè)太陽(yáng)密度的表達(dá)式為()A.eq\f(24πL3,GT2d3) B.eq\f(3πL3,GT2d3)C.eq\f(3πd3,GT2L3) D.eq\f(6πd3,GT2L3)答案A解析設(shè)太陽(yáng)的半徑為R,太陽(yáng)到地球的距離為r,由題圖,根據(jù)相似三角形可得eq\f(R,r)=eq\f(\f(d,2),L),解得R=eq\f(dr,2L);地球繞太陽(yáng)做勻速圓周運(yùn)動(dòng),萬(wàn)有引力提供向心力,設(shè)太陽(yáng)質(zhì)量為M,地球質(zhì)量為m,則有eq\f(GMm,r2)=meq\f(4π2,T2)r,又太陽(yáng)體積為V=eq\f(4,3)πR3,太陽(yáng)密度為ρ=eq\f(M,V),聯(lián)立可解得ρ=eq\f(24πL3,GT2d3),A正確,B、C、D錯(cuò)誤。課時(shí)作業(yè)[A組基礎(chǔ)鞏固練]1.(2023·吉林省延邊州高三下教學(xué)質(zhì)量檢測(cè))假如某天地球加速繞太陽(yáng)做橢圓軌道運(yùn)動(dòng),地球到太陽(yáng)的最近距離仍為R(R為加速前地球繞太陽(yáng)做圓周運(yùn)動(dòng)時(shí)與太陽(yáng)間的距離),地球的公轉(zhuǎn)周期變?yōu)?年,則在該橢圓軌道上地球距太陽(yáng)的最遠(yuǎn)距離為()A.2R B.4RC.7R D.8R答案C解析根據(jù)題意可知,加速前地球繞太陽(yáng)做圓周運(yùn)動(dòng)的周期T0=1年,設(shè)在該橢圓軌道上地球距太陽(yáng)的最遠(yuǎn)距離為r,則其半長(zhǎng)軸為a=eq\f(R+r,2),根據(jù)開(kāi)普勒第三定律,可得eq\f(a3,T2)=eq\f(R3,Teq\o\al(2,0)),其中T=8年,解得r=7R,故選C。2.(2023·廣東省佛山市高三下教學(xué)質(zhì)量檢測(cè)二)中國(guó)空間站軌道高度為400~450千米,地球半徑約為6370千米。當(dāng)航天員出艙在空間站艙外作業(yè)時(shí),其所受地球的引力大約是他在地面所受地球引力的()A.0.9倍 B.0.25倍C.0.1倍 D.0.01倍答案A解析設(shè)地球半徑為R,空間站的軌道高度為h,航天員的質(zhì)量為m,地球質(zhì)量為M,航天員在地球表面時(shí)所受地球的引力F1=eq\f(GMm,R2),在空間站艙外作業(yè)時(shí)所受地球的引力F2=eq\f(GMm,(R+h)2),可得eq\f(F2,F1)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(R,R+h)))eq\s\up12(2)≈0.9,故選A。3.(2023·山東省濟(jì)寧市高三下二模)如圖甲所示,太空電梯的原理是,在地球同步軌道上建造一個(gè)空間站,并用某種足夠長(zhǎng)也足夠結(jié)實(shí)的“繩索”將其與地面相連,“繩索”會(huì)繃緊,宇航員、乘客以及貨物可以通過(guò)電梯轎廂一樣的升降艙沿繩索直入太空。如圖乙所示,有一太空電梯連接地球赤道上的固定基地與同步空間站,相對(duì)地球靜止。已知地球半徑為R、質(zhì)量為M、自轉(zhuǎn)周期為T(mén),引力常量為G,下列說(shuō)法正確的是()A.太空電梯上各點(diǎn)均處于完全失重狀態(tài)B.太空電梯上各點(diǎn)線速度大小與該點(diǎn)到地心的距離成反比C.升降艙停在距地球表面高度為2R的站點(diǎn)時(shí),升降艙的向心加速度大小為eq\f(GM,9R2)D.升降艙停在距地球表面高度為2R的站點(diǎn)時(shí),升降艙的向心加速度大小為eq\f(12π2R,T2)答案D解析太空電梯上各點(diǎn)隨地球一起做勻速圓周運(yùn)動(dòng),各點(diǎn)角速度相等,大小為地球自轉(zhuǎn)角速度,由v=ωr可知,太空電梯上各點(diǎn)線速度大小與該點(diǎn)到地心的距離成正比,故B錯(cuò)誤;太空電梯各點(diǎn)隨地球一起做勻速圓周運(yùn)動(dòng),由B項(xiàng)分析結(jié)合a=rω2可知,越靠近地心,向心加速度越小,而根據(jù)a引=eq\f(GM,r2)可知,越靠近地心,地球引力提供的加速度越大,在同步空間站處,a=a引,則只有處于同步空間站的點(diǎn)才處于完全失重狀態(tài),不是各點(diǎn)都處于完全失重狀態(tài),故A錯(cuò)誤;升降艙停在距地球表面高度為2R的站點(diǎn)時(shí),由A項(xiàng)分析可知,升降艙受到“繩索”的支持力F,此時(shí)做勻速圓周運(yùn)動(dòng)的軌道半徑為r′=2R+R=3R,對(duì)升降艙,由牛頓第二定律有eq\f(GMm,req\o\al(2,1))-F=ma1,解得升降艙的加速度大小為a1=eq\f(GM,9R2)-eq\f(F,m),故C錯(cuò)誤;由題意知,地球自轉(zhuǎn)的角速度ω=eq\f(2π,T),而升降艙停在距地球表面高度為2R的站點(diǎn)時(shí),向心加速度大小為a1=ω2r1,可解得a1=eq\f(12π2R,T2),故D正確。4.(2024·遼寧省鞍山市高三上第一次質(zhì)量檢測(cè))如圖所示,地球資源衛(wèi)星“04星”繞地球做勻速圓周運(yùn)動(dòng)的周期為T(mén),地球相對(duì)“04星”的張角為θ,引力常量為G,地球表面的重力加速度為g,根據(jù)上述信息可推斷地球質(zhì)量為()A.eq\f(g3T2sin6\f(θ,2),16π4G) B.eq\f(g3T4sin6\f(θ,2),16π4G)C.eq\f(g3T4sin2\f(θ,2),16π4G) D.eq\f(g3T4sin4\f(θ,2),16π4G)答案B解析設(shè)“04星”繞地球做勻速圓周運(yùn)動(dòng)的軌道半徑為r,地球的半徑為R,地球質(zhì)量為M,“04星”質(zhì)量為m,由萬(wàn)有引力提供向心力有eq\f(GMm,r2)=meq\f(4π2,T2)r,根據(jù)地球表面質(zhì)量為m′的物體所受重力近似等于地球?qū)λ娜f(wàn)有引力,有m′g=eq\f(GMm′,R2),由幾何關(guān)系有eq\f(R,r)=sineq\f(θ,2),聯(lián)立解得M=eq\f(g3T4sin6\f(θ,2),16π4G),故選B。[B組綜合提升練]5.(2022·河北省秦皇島市高三下三模)2022年4月16日,我國(guó)在太原衛(wèi)星發(fā)射中心發(fā)射了一顆大氣環(huán)境監(jiān)測(cè)衛(wèi)星,該衛(wèi)星將推動(dòng)我國(guó)在生態(tài)環(huán)境、氣象、農(nóng)業(yè)農(nóng)村等領(lǐng)域的遙感應(yīng)用。若用F表示該衛(wèi)星在發(fā)射過(guò)程中到地心距離為x處時(shí)所受萬(wàn)有引力的大小,則下列圖像中,可能正確的是()答案D解析該衛(wèi)星在與地心距離為x處時(shí)所受萬(wàn)有引力的大小F=eq\f(GMm,x2),則F-x圖像為曲線,故A、B錯(cuò)誤;上式兩邊取對(duì)數(shù),可得lnF=ln(GMm)-2lnx,則lnF-lnx圖像是斜率為負(fù)數(shù)的傾斜直線,故C錯(cuò)誤,D正確。6.(2023·東北三省四城市暨沈陽(yáng)市高三下二模)(多選)2021年2月,我國(guó)執(zhí)行火星探測(cè)任務(wù)的“天問(wèn)一號(hào)”火星探測(cè)衛(wèi)星順利實(shí)施近火制動(dòng),完成火星捕獲,正式進(jìn)入環(huán)繞火星軌道。假設(shè)火星可視為半徑為R的均勻球體,“天問(wèn)一號(hào)”沿橢圓軌道繞火星運(yùn)動(dòng),周期為T(mén)。如圖所示,橢圓軌道的近火點(diǎn)P離火星表面的距離為2R,遠(yuǎn)火點(diǎn)Q離火星表面的距離為4R,引力常量為G。下列說(shuō)法正確的是()A.根據(jù)以上條件,可以求出火星的質(zhì)量B.根據(jù)以上條件,可以求出“天問(wèn)一號(hào)”的質(zhì)量C.根據(jù)以上條件,可以求出近火衛(wèi)星的周期D.“天問(wèn)一號(hào)”在近火點(diǎn)P和遠(yuǎn)火點(diǎn)Q的加速度大小之比為4∶1答案AC解析根據(jù)題意可知,橢圓軌道的半長(zhǎng)軸為a=eq\f(2R+2R+4R,2)=4R,由開(kāi)普勒第三定律有eq\f(a3,T2)=eq\f(R3,Teq\o\al(2,1)),解得近火衛(wèi)星的周期為T(mén)1=eq\r(\f(R3,a3))T=eq\f(1,8)T,設(shè)火星質(zhì)量為M,對(duì)于質(zhì)量為m的近火衛(wèi)星,由萬(wàn)有引力提供向心力,有eq\f(GMm,R2)=meq\f(4π2,Teq\o\al(2,1))R,解得M=eq\f(4π2R3,GTeq\o\al(2,1))=eq\f(256π2R3,GT2),即根據(jù)題中條件,可以求出火星的質(zhì)量和近火衛(wèi)星的周期,故A、C正確;設(shè)“天問(wèn)一號(hào)”質(zhì)量為m天,如果“天問(wèn)一號(hào)”繞火星以r0=a=4R的半徑做勻速圓周運(yùn)動(dòng),由開(kāi)普勒第三定律知其周期也為T(mén),對(duì)“天問(wèn)一號(hào)”,由萬(wàn)有引力提供向心力,有eq\f(GMm天,req\o\al(2,0))=m天eq\f(4π2,T2)r0,可知“天問(wèn)一號(hào)”的質(zhì)量被消掉,則不可以求出“天問(wèn)一號(hào)”的質(zhì)量,故B錯(cuò)誤;對(duì)“天問(wèn)一號(hào)”,由牛頓第二定律知eq\f(GMm天,r2)=m天a加,解得加速度大小a加=eq\f(GM,r2),“天問(wèn)一號(hào)”在近火點(diǎn)P和遠(yuǎn)火點(diǎn)Q到火星球心的距離之比為eq\f(rP,rQ)=eq\f(2R+R,4R+R)=eq\f(3,5),則“天問(wèn)一號(hào)”在近火點(diǎn)P和遠(yuǎn)火點(diǎn)Q的加速度大小之比eq\f(aP,aQ)=eq\f(req\o\al(2,Q),req\o\al(2,P))=eq\f(25,9),故D錯(cuò)誤。7.(2022·山東省濟(jì)南市高三下二模)某氣體星球的半徑為R,距離星球中心2R處的P點(diǎn)的重力加速度大小為g。若該星球的體積均勻膨脹,膨脹過(guò)程中星球質(zhì)量不變,且質(zhì)量分布始終均勻。當(dāng)星球半徑膨脹到4R時(shí),P點(diǎn)的重力加速度大小變?yōu)間′。已知質(zhì)量分布均勻的球殼對(duì)球殼內(nèi)物體的引力為零,星球自轉(zhuǎn)的影響可忽略。則g′與g的比值為()A.eq\f(1,8) B.eq\f(1,4)C.eq\f(1,2) D.1答案A解析對(duì)于位于P點(diǎn)質(zhì)量為m的物體,當(dāng)氣體星球的半徑為R時(shí),根據(jù)萬(wàn)有引力等于重力,可得eq\f(GMm,(2R)2)=mg,當(dāng)星球半徑膨脹到4R時(shí),設(shè)星球密度為ρ,則有M=ρ·eq\f(4,3)π(4R)3,對(duì)于在P點(diǎn)處質(zhì)量為m的物體,有eq\f(GM′m,(2R)2)=mg′,其中M′=ρ·eq\f(4,3)π(2R)3,聯(lián)立以上各式可得eq\f(g′,g)=eq\f(1,8),A正確,B、C、D錯(cuò)誤。8.(2022·山東省淄博市高三下三模)如圖甲所示,南京紫金山天文臺(tái)展示的每隔2h拍攝的某行星及其一顆衛(wèi)星的照片。小齊同學(xué)取向左為正方向,在圖甲照片上用刻度尺測(cè)得行星球心與衛(wèi)星之間的距離L如圖乙所示。已知該衛(wèi)星圍繞行星做勻速圓周運(yùn)動(dòng),在圖甲照片上測(cè)得行星的直徑為2cm,引力常量為G=6.67×10-11N·m2/kg2。下列說(shuō)法正確的是()A.該衛(wèi)星圍繞行星運(yùn)動(dòng)的周期為T(mén)=24hB.該衛(wèi)星圍繞行星運(yùn)動(dòng)的周期為T(mén)=32hC.該行星的平均密度ρ=5×103kg/m3D.該行星的平均密度ρ=5×105kg/m3答案C解析由題圖乙可知,從t=0時(shí)刻到t=24h時(shí)刻衛(wèi)星繞行星轉(zhuǎn)動(dòng)半周,則該衛(wèi)星繞行星做勻速圓周運(yùn)動(dòng)的周期為T(mén)=2×24h=48h,故A、B錯(cuò)誤;照片上行星的半徑為R′=1cm,照片上的軌道半徑r′=10cm,設(shè)實(shí)際尺寸是照片上尺寸的k倍,則實(shí)際行星的半徑為R=kR′,軌道半徑為r=kr′,由萬(wàn)有引力提供向心力得Geq\f(Mm,r2)=meq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))eq\s\up12(2)r,行星的體積為V=eq\f(4,3)πR3,行星的密度為ρ=eq\f(M,V),聯(lián)立解得ρ=5×103kg/m3,故C正確,D錯(cuò)誤。9.(2021·福建高考)一火星探測(cè)器著陸火星之前,需經(jīng)歷動(dòng)力減速、懸停避障兩個(gè)階段。在動(dòng)力減速階段,探測(cè)器速度大小由96m/s減小到0,歷時(shí)80s。在懸停避障階段,探測(cè)器啟用最大推力為7500N的變推力發(fā)動(dòng)機(jī),在距火星表面約百米高度處懸停,尋找著陸點(diǎn)。已知火星半徑約為地球半徑的eq\f(1,2),火星質(zhì)量約為地球質(zhì)量的eq\f(1,10),地球表面重力加速度大小取10m/s2,探測(cè)器在動(dòng)力減速階段的運(yùn)動(dòng)視為豎直向下的勻減速運(yùn)動(dòng)。求:(1)在動(dòng)力減速階段,探測(cè)器的加速度大小和下降距離;(2)在懸停避障階段,能借助該變推力發(fā)動(dòng)機(jī)實(shí)現(xiàn)懸停的探測(cè)器的最大質(zhì)量。答案(1)1.2m/s23840m(2)1875kg解析(1)設(shè)探測(cè)器在動(dòng)力減速階段所用時(shí)間為t,初速度大小為v1,末速度大小為v2,加速度大小為a,由勻變速直線運(yùn)動(dòng)速度公式有v2=v1-at①代入題給數(shù)據(jù)得a=1.2m/s2②設(shè)探測(cè)器下降的距離為s,由勻變速直線運(yùn)動(dòng)位移公式有s=v1t-eq\f(1,2)at2③聯(lián)立②③式并代入題給數(shù)據(jù)得s=3840m。④(2)設(shè)火星的質(zhì)量、半徑和表面重力加速度大小分別為M火、R火和g火,地球的質(zhì)量、半徑和表面重力加速度大小分別為M地、R地和g地,對(duì)星球表面質(zhì)量為m的物體有eq\f(GM火m,Req\o\al(2,火))=mg火⑤eq\f(GM地m,Req\o\al(2,地))=mg地⑥式中G為引力常量。設(shè)變推力發(fā)動(dòng)機(jī)的最大推力為F,能夠懸停的火星探測(cè)器最大質(zhì)量為mmax,由力的平衡條件有F=mmaxg火⑦聯(lián)立⑤⑥⑦式并代入題給數(shù)據(jù)得mmax=1875kg。⑧建模提能2雙星、多星模型前面我們討論的是類(lèi)似太陽(yáng)系的單星系統(tǒng),其特點(diǎn)是有一個(gè)主星,質(zhì)量遠(yuǎn)大于周?chē)钠渌求w,可以看成近似不動(dòng),所以其他星體繞它運(yùn)動(dòng)。除此之外,在宇宙空間,還存在兩顆或多顆質(zhì)量差別不大的星體,它們離其他星體很遠(yuǎn),在彼此間的萬(wàn)有引力作用下運(yùn)動(dòng),組成雙星或多星系統(tǒng)。雙星系統(tǒng)軌道比較穩(wěn)定,很常見(jiàn),三星及其他更多星體的系統(tǒng)軌道不穩(wěn)定,非常罕見(jiàn)。下面介紹具有代表性的雙星模型和三星模型。1.雙星模型(1)兩顆星體繞公共圓心轉(zhuǎn)動(dòng),如圖1所示。(2)特點(diǎn)①各自所需的向心力由彼此間的萬(wàn)有引力相互提供,即eq\f(Gm1m2,L2)=m1ωeq\o\al(2,1)r1,eq\f(Gm1m2,L2)=m2ωeq\o\al(2,2)r2。②兩顆星的周期及角速度都相同,即T1=T2,ω1=ω2。③兩顆星的軌道半徑與它們之間的距離關(guān)系為:r1+r2=L。④兩顆星到軌道圓心的距離r1、r2與星體質(zhì)量成反比,即eq\f(m1,m2)=eq\f(r2,r1)。⑤雙星的運(yùn)動(dòng)周期T=2πeq\r(\f(L3,G(m1+m2)))。⑥雙星的總質(zhì)量m1+m2=eq\f(4π2L3,T2G)。2.三星模型(1)三星系統(tǒng)繞共同圓心在同一平面內(nèi)做圓周運(yùn)動(dòng)時(shí)比較穩(wěn)定,三顆星的質(zhì)量一般不同,其軌道如圖2所示。每顆星體做勻速圓周運(yùn)動(dòng)所需的向心力由其他星體對(duì)該星體的萬(wàn)有引力的合力提供。(2)特點(diǎn):對(duì)于這種穩(wěn)定的軌道,除中央星體外(如果有),每顆星體轉(zhuǎn)動(dòng)的方向相同,運(yùn)行的角速度、周期相同。(3)理想情況下,它們的位置具有對(duì)稱(chēng)性,下面介紹兩種特殊的對(duì)稱(chēng)軌道。①三顆星位于同一直線上,兩顆質(zhì)量均為m的環(huán)繞星圍繞中央星在同一半徑為R的圓形軌道上運(yùn)行(如圖3甲所示)。②三顆質(zhì)量均為m的星體位于等邊三角形的三個(gè)頂點(diǎn)上(如圖3乙所示)?!半p星系統(tǒng)”由相距較近的星球組成,每個(gè)星球的半徑均遠(yuǎn)小于兩者之間的距離,而且雙星系統(tǒng)一般遠(yuǎn)離其他天體,它們?cè)诒舜说娜f(wàn)有引力作用下,繞某一點(diǎn)O做勻速圓周運(yùn)動(dòng)。如圖所示,某一雙星系統(tǒng)中A星球的質(zhì)量為m1,B星球的質(zhì)量為m2,它們球心之間的距離為L(zhǎng),引力常量為G,則下列說(shuō)法正確的是()A.B星球的軌道半徑為eq\f(m2,m1+m2)LB.A星球運(yùn)行的周期為2πLeq\r(\f(L,G(m1+m2)))C.A星球和B星球的線速度大小之比為m1∶m2D.若在O點(diǎn)放一個(gè)質(zhì)點(diǎn),則它受到兩星球的引力之和一定為零[答案]B[解析]由于兩星球的周期相同,則它們的角速度也相同,設(shè)兩星球運(yùn)行的角速度為ω,軌道半徑分別為r1、r2,根據(jù)牛頓第二定律,對(duì)A星球有:Geq\f(m1m2,L2)=m1ω2r1,對(duì)B星球有:Geq\f(m1m2,L2)=m2ω2r2,得r1∶r2=m2∶m1,又r1+r2=L,得r1=eq\f(m2,m1+m2)L,r2=eq\f(m1,m1+m2)L,A錯(cuò)誤;根據(jù)Geq\f(m1m2,L2)=m1eq\f(4π2,T2)r1,r1=eq\f(m2,m1+m2)L,解得A星球運(yùn)行的周期T=2πLeq\r(\f(L,G(m1+m2))),B正確;A星球和B星球的線速度大小之比eq\f(vA,vB)=eq\f(ωr1,ωr2)=eq\f(m2,m1),C錯(cuò)誤;O點(diǎn)處質(zhì)量為m的質(zhì)點(diǎn)受到B星球的萬(wàn)有引力FB=eq\f(Gm2m,req\o\al(2,2))=eq\f(Gm2m,\b\lc\(\rc\)(\a\vs4\al\co1(\f(m1,m1+m2)L))\s\up12(2)),受到A星球的萬(wàn)有引力FA=eq\f(Gm1m,req\o\al(2,1))=eq\f(Gm1m,\b\lc\(\rc\)(\a\vs4\al\co1(\f(m2,m1+m2)L))\s\up12(2)),故該質(zhì)點(diǎn)受到兩星球的引力之和不為零,D錯(cuò)誤?!久麕燑c(diǎn)睛】解決雙星、多星問(wèn)題,要抓住四點(diǎn)(1)根據(jù)雙星或多星的運(yùn)動(dòng)特點(diǎn)及規(guī)律,確定系統(tǒng)的中心以及運(yùn)動(dòng)的軌道半徑。(2)星體的向心力由其他天體的萬(wàn)有引力的合力提供。(3)星體的角速度相等。(4)星體的軌道半徑不是天體間的距離。要利用幾何知識(shí),尋找兩者之間的關(guān)系,正確計(jì)算萬(wàn)有引力和向心力。1.(2023·江蘇省淮安市高三下三統(tǒng)模擬檢測(cè))人類(lèi)首次發(fā)現(xiàn)的引力波來(lái)源于距地球之外13億光年的兩個(gè)黑洞互相繞轉(zhuǎn)最后合并的過(guò)程。設(shè)兩個(gè)黑洞A、B繞其連線上的O點(diǎn)做勻速圓周運(yùn)動(dòng),如圖所示,黑洞A的軌道半徑大于黑洞B的軌道半徑,兩個(gè)黑洞的總質(zhì)量為M,兩個(gè)黑洞中心間的距離為L(zhǎng),則()A.黑洞A的質(zhì)量一定大于黑洞B的質(zhì)量B.黑洞A的線速度一定小于黑洞B的線速度C.其運(yùn)動(dòng)周期T=eq\r(\f(4π2L3,GM))D.兩個(gè)黑洞的總質(zhì)量M一定,L越大,角速度越大答案C解析設(shè)黑洞A、B的質(zhì)量分別為mA、mB,軌道半徑分別為RA、RB,角速度均為ω,線速度大小分別為vA、vB,由萬(wàn)有引力提供向心力有eq\f(GmAmB,L2)=mAω2RA,eq\f(GmAmB,L2)=mBω2RB,由題意有RA+RB=L,mA+mB=M,聯(lián)立可得eq\f(mA,mB)=eq\f(RB,RA),而RA>RB,所以mA<mB,又由v=ωr可知,黑洞A、B的線速度大小分別為vA=ωRA,vB=ωRB,則vA>vB,故A、B錯(cuò)誤;由A、B項(xiàng)分析可解得ω=eq\r(\f(GM,L3)),可知當(dāng)兩個(gè)黑洞的總質(zhì)量M一定時(shí),L越大,則角速度越小,故D錯(cuò)誤;根據(jù)T=eq\f(2π,ω),可解得兩個(gè)黑洞的運(yùn)動(dòng)周期T=eq\r(\f(4π2L3,GM)),故C正確。2.(多選)宇宙間存在一些離其他恒星較遠(yuǎn)的三星系統(tǒng),其中有一種三星系統(tǒng)如圖所示,三顆質(zhì)量均為m的星球位于邊長(zhǎng)為R的等邊三角形的三個(gè)頂點(diǎn)上,并繞其中心O做勻速圓周運(yùn)動(dòng)。忽略其他星球?qū)λ鼈兊囊ψ饔?,引力常量為G,以下對(duì)該三星系統(tǒng)的說(shuō)法正確的是()A.每顆星球做圓周運(yùn)動(dòng)的半徑都為eq\f(\r(3),3)RB.每顆星球做圓周運(yùn)動(dòng)的加速度都與三顆星球的質(zhì)量無(wú)關(guān)C.每顆星球做圓周運(yùn)動(dòng)的周期都為2πReq\r(\f(R,3Gm))D.若距離R和m均增大為原來(lái)的3倍,則每顆星球的線速度大小不變答案ACD解析由幾何關(guān)系知每顆星球做圓周運(yùn)動(dòng)的半徑r=eq\f(\r(3),3)R,故A正確;任意兩顆星球之間的萬(wàn)有引力為F=eq\f(Gm2,R2),每一顆星球受到的合力F1=eq\r(3)F,由合力提供向心力,有eq\f(\r(3)Gmm,R2)=ma,解得a=eq\f(\r(3)Gm,R2),即每顆星球做圓周運(yùn)動(dòng)的加速度都與三顆星球的質(zhì)量m成正比,故B錯(cuò)誤;由合力提供向心力,有eq\f(\r(3)Gmm,R2)=meq\f(4π2,T2)r,解得每顆星球做圓周運(yùn)動(dòng)的周期T=2πReq\r(\f(R,3Gm)),故C正確;由合力提供向心力,有eq\f(\r(3)Gmm,R2)=meq\f(v2,r),解得v=eq\r(\f(Gm,R)),若距離R和m均增大為原來(lái)的3倍,則每顆星球的線速度大小不變,故D正確。課時(shí)作業(yè)[A組基礎(chǔ)鞏固練]1.(2023·安徽省蕪湖市高三下5月教學(xué)質(zhì)量統(tǒng)測(cè)(二模))目前在軌的中國(guó)空間站“天和”核心艙是迄今為止我國(guó)發(fā)射的最大航天器,也是世界上現(xiàn)役航天器中最大的單體。若空間站繞地球做勻速圓周運(yùn)動(dòng),它與地心的連線在單位時(shí)間內(nèi)掃過(guò)的面積為S。已知地球半徑為R,地球表面的重力加速度大小為g,則空間站的運(yùn)行速率為()A.eq\f(gR2,2S) B.eq\f(4S2,gR2)C.eq\f(gR2,4S) D.eq\f(2S,gR2)答案A解析設(shè)空間站的軌道半徑為r,質(zhì)量為m,運(yùn)行速率為v,地球質(zhì)量為M,由扇形面積公式可知,單位時(shí)間內(nèi)空間站與地心連線掃過(guò)的面積為S=eq\f(1,2)vr,由萬(wàn)有引力提供向心力可知Geq\f(Mm,r2)=meq\f(v2,r),對(duì)于質(zhì)量為m′的物體,其在地球表面受到的重力近似等于地球引力,有m′g=Geq\f(Mm′,R2),聯(lián)立解得v=eq\f(gR2,2S),故B、C、D錯(cuò)誤,A正確。2.(2023·黑龍江省齊齊哈爾市高三一模)中國(guó)北斗衛(wèi)星導(dǎo)航系統(tǒng)(BDS)是中國(guó)自行研制的全球衛(wèi)星導(dǎo)航系統(tǒng),是繼美國(guó)全球定位系統(tǒng)(GPS)、俄羅斯格洛納斯衛(wèi)星導(dǎo)航系統(tǒng)(GLONASS)之后第三個(gè)成熟的衛(wèi)星導(dǎo)航系統(tǒng)。該系統(tǒng)包括5顆地球同步衛(wèi)星和30顆中圓軌道衛(wèi)星,中圓軌道衛(wèi)星的軌道半徑比同步衛(wèi)星的小,關(guān)于北斗衛(wèi)星,下列說(shuō)法中正確的是()A.中圓軌道衛(wèi)星線速度比同步衛(wèi)星線速度小B.中圓軌道衛(wèi)星的發(fā)射速度比同步衛(wèi)星發(fā)射速度小C.通過(guò)調(diào)整,可使同步衛(wèi)星定點(diǎn)在北京上空D.同步衛(wèi)星的向心加速度比地球赤道上物體隨地球自轉(zhuǎn)時(shí)的向心加速度小答案B解析設(shè)地球質(zhì)量為M,衛(wèi)星質(zhì)量為m,衛(wèi)星的軌道半徑為r,線速度大小為v,對(duì)于繞地球做圓周運(yùn)動(dòng)的衛(wèi)星,由萬(wàn)有引力提供向心力有Geq\f(Mm,r2)=meq\f(v2,r),解得v=eq\r(\f(GM,r)),可知軌道半徑越小,衛(wèi)星線速度越大,由于中圓軌道衛(wèi)星的軌道半徑比同步衛(wèi)星的小,故中圓軌道衛(wèi)星線速度比同步衛(wèi)星線速度大,A錯(cuò)誤;衛(wèi)星的軌道半徑越大,需要的發(fā)射速度越大,B正確;同步衛(wèi)星只能定點(diǎn)在赤道上空,而北京不在赤道上,故同步衛(wèi)星不可以定點(diǎn)在北京上空,C錯(cuò)誤;同步衛(wèi)星與赤道上物體隨地球自轉(zhuǎn)角速度相同,由a=rω2可知,同步衛(wèi)星的向心加速度大于赤道上物體隨地球自轉(zhuǎn)時(shí)的向心加速度,D錯(cuò)誤。3.(2022·浙江1月選考)“天問(wèn)一號(hào)”從地球發(fā)射后,在如圖甲所示的P點(diǎn)沿地火轉(zhuǎn)移軌道到Q點(diǎn),再依次進(jìn)入如圖乙所示的調(diào)相軌道和停泊軌道,則“天問(wèn)一號(hào)”()A.發(fā)射速度介于7.9km/s與11.2km/s之間B.從P點(diǎn)轉(zhuǎn)移到Q點(diǎn)的時(shí)間小于6個(gè)月C.在環(huán)繞火星的停泊軌道運(yùn)行的周期比在調(diào)相軌道上小D.在地火轉(zhuǎn)移軌道運(yùn)動(dòng)時(shí)的速度均大于地球繞太陽(yáng)的速度答案C解析“天問(wèn)一號(hào)”發(fā)射后要脫離地球引力束縛,則發(fā)射速度要超過(guò)第二宇宙速度11.2km/s,故A錯(cuò)誤;由題圖可知,地火轉(zhuǎn)移軌道的半長(zhǎng)軸比地球軌道半徑大,根據(jù)開(kāi)普勒第三定律可知,“天問(wèn)一號(hào)”在地火轉(zhuǎn)移軌道上運(yùn)行的周期大于地球的公轉(zhuǎn)周期12個(gè)月,因此從P轉(zhuǎn)移到Q的時(shí)間大于6個(gè)月,故B錯(cuò)誤;根據(jù)開(kāi)普勒第三定律,并結(jié)合停泊軌道、調(diào)相軌道的半長(zhǎng)軸大小關(guān)系,可知“天問(wèn)一號(hào)”在環(huán)繞火星的停泊軌道運(yùn)行的周期比在調(diào)相軌道上小,故C正確;“天問(wèn)一號(hào)”在P點(diǎn)點(diǎn)火加速,做離心運(yùn)動(dòng)進(jìn)入地火轉(zhuǎn)移軌道,故在地火轉(zhuǎn)移軌道上P點(diǎn)的速度比地球環(huán)繞太陽(yáng)的速度大,即v地火P>v地,“天問(wèn)一號(hào)”沿地火轉(zhuǎn)移軌道到達(dá)Q點(diǎn)之后,要加速才能進(jìn)入火星軌道,即v火>v地火Q,根據(jù)v=eq\r(\f(GM,R))可知,地球繞太陽(yáng)的速度大于火星繞太陽(yáng)的速度,即v地>v火,所以v地>v地火Q,即“天問(wèn)一號(hào)”在地火轉(zhuǎn)移軌道上運(yùn)動(dòng)時(shí)并不是每一點(diǎn)的速度都比地球繞太陽(yáng)的速度大,故D錯(cuò)誤。4.(2023·浙江6月選考)木星的衛(wèi)星中,木衛(wèi)一、木衛(wèi)二、木衛(wèi)三做圓周運(yùn)動(dòng)的周期之比為1∶2∶4。木衛(wèi)三周期為T(mén),公轉(zhuǎn)軌道半徑是月球繞地球軌道半徑r的n倍。月球繞地球公轉(zhuǎn)周期為T(mén)0,則()A.木衛(wèi)一軌道半徑為eq\f(n,16)rB.木衛(wèi)二軌道半徑為eq\f(n,2)rC.周期T與T0之比為neq\f(3,2)D.木星質(zhì)量與地球質(zhì)量之比為eq\f(Teq\o\al(2,0),T2)n3答案D解析對(duì)環(huán)繞質(zhì)量為M的行星做圓周運(yùn)動(dòng)的質(zhì)量為m的衛(wèi)星,設(shè)其軌道半徑為r′,公轉(zhuǎn)周期為T(mén)′,根據(jù)萬(wàn)有引力提供向心力有Geq\f(Mm,r′2)=meq\f(4π2,T′2)r′,可得M=eq\f(4π2r′3,GT′2)。已知木衛(wèi)一、木衛(wèi)二、木衛(wèi)三均繞木星做圓周運(yùn)動(dòng),周期之比為T(mén)1∶T2∶T3=1∶2∶4,可得木衛(wèi)一、木衛(wèi)二、木衛(wèi)三的軌道半徑之比為r1∶r2∶r3=1∶eq\r(3,4)∶eq\r(3,16),又r3=nr,則木衛(wèi)一軌道半徑為r1=eq\f(nr,\r(3,16)),木衛(wèi)二軌道半徑為r2=eq\f(nr,\r(3,16))×eq\r(3,4)=eq\f(nr,\r(3,4)),故A、B錯(cuò)誤;由M=eq\f(4π2r′3,GT′2)得T′=eq\r(\f(4π2r′3,GM)),則eq\f(T,T0)=eq\r(\f((nr)3,M木))·eq\r(\f(M地,r3))=neq\s\up6(\f(3,2))eq\r(\f(M地,M木)),C錯(cuò)誤;由M=eq\f(4π2r′3,GT′2)可知,eq\f(M木,M地)=eq\f((nr)3,T2)·eq\f(Teq\o\al(2,0),r3)=eq\f(Teq\o\al(2,0),T2)n3,D正確。5.(2023·湖北高考)2022年12月8日,地球恰好運(yùn)行到火星和太陽(yáng)之間,且三者幾乎排成一條直線,此現(xiàn)象被稱(chēng)為“火星沖日”?;鹦呛偷厍驇缀踉谕黄矫鎯?nèi)沿同一方向繞太陽(yáng)做圓周運(yùn)動(dòng),火星與地球的公轉(zhuǎn)軌道半徑之比約為3∶2,如圖所示。根據(jù)以上信息可以得出()A.火星與地球繞太陽(yáng)運(yùn)動(dòng)的周期之比約為27∶8B.當(dāng)火星與地球相距最遠(yuǎn)時(shí),兩者的相對(duì)速度最大C.火星與地球表面的自由落體加速度大小之比約為9∶4D.下一次“火星沖日”將出現(xiàn)在2023年12月8日之前答案B解析火星和地球均繞太陽(yáng)做圓周運(yùn)動(dòng),根據(jù)開(kāi)普勒第三定律有eq\f(req\o\al(3,火),Teq\o\al(2,火))=eq\f(req\o\al(3,地),Teq\o\al(2,地)),可得火星與地球繞太陽(yáng)運(yùn)動(dòng)的周期之比eq\f(T火,T地)=eq\r(\f(req\o\al(3,火),req\o\al(3,地)))=eq\r(\f(27,8)),A錯(cuò)誤;火星和地球幾乎在同一平面內(nèi)均沿逆時(shí)針?lè)较蚶@太陽(yáng)做勻速圓周運(yùn)動(dòng),速度大小均不變,當(dāng)火星與地球相距最遠(yuǎn)時(shí),由于兩者的速度方向相反,故此時(shí)兩者的相對(duì)速度最大,B正確;在星球表面,物體所受萬(wàn)有引力近似等于物體的重力,即Geq\f(Mm,R2)=mg,得g=eq\f(GM,R2),從題給條件無(wú)法求得火星和地球表面的自由落體加速度大小之比,C錯(cuò)誤;火星和地球繞太陽(yáng)做勻速圓周運(yùn)動(dòng),有ω火=eq\f(2π,T火),ω地=eq\f(2π,T地),結(jié)合A項(xiàng)分析知ω地>ω火,設(shè)相鄰兩次“火星沖日”之間的時(shí)間為t,則有(ω地-ω火)t=2π,可得t=eq\f(T火T地,T火-T地)=eq\f(\r(27),\r(27)-\r(8))T地=2.2T地>T地,可知下一次“火星沖日”將出現(xiàn)在2023年12月8日之后,D錯(cuò)誤。[B組綜合提升練]6.(2023·遼寧省葫蘆島市高三下第二次模擬)神舟十五號(hào)飛船??刻旌秃诵呐摵?,中國(guó)空間站基本建成??臻g站繞地球可看作做勻速圓周運(yùn)動(dòng),由于地球的自轉(zhuǎn),空間站的飛行軌道在地球表面的投影如圖所示,圖中標(biāo)明了空間站相繼飛臨赤道上空所對(duì)應(yīng)的地面的經(jīng)度。設(shè)空間站繞地球飛行的軌道半徑為r1,地球同步衛(wèi)星飛行軌道半徑為r2,則r2與r1的比值最接近的值為()A.10 B.8C.6 D.4答案C解析由題圖可知,空間站每繞地球運(yùn)動(dòng)一圈,地球自轉(zhuǎn)轉(zhuǎn)過(guò)的角度為22.5°,設(shè)空間站繞地球做勻速圓周運(yùn)動(dòng)的周期為T(mén),地球自轉(zhuǎn)周期為T(mén)0,則有T=eq\f(22.5°,360°)·T0=eq\f(1,16)T0,設(shè)地球質(zhì)量為M,對(duì)于繞地球做勻速圓周運(yùn)動(dòng)、質(zhì)量為m的衛(wèi)星,由萬(wàn)有引力提供向心力有eq\f(GMm,r2)=meq\f(4π2,T2)r,可得衛(wèi)星軌道半徑r=eq\r(3,\f(GMT2,4π2)),則有eq\f(r2,r1)=eq\r(3,\f(Teq\o\al(2,0),T2))=eq\r(3,162)≈6,故選C。7.(多選)航天員進(jìn)入空間站繞地球做圓周運(yùn)動(dòng)時(shí),由于地球遮擋陽(yáng)光,會(huì)經(jīng)歷“日全食”過(guò)程。已知地球半徑為R,地球質(zhì)量為M,引力常量為G,地球自轉(zhuǎn)周期為T(mén)0,太陽(yáng)光可看作平行光。如圖所示,某航天員在A點(diǎn)測(cè)出她對(duì)地球的張角為2θ,OA與太陽(yáng)光平行,下列說(shuō)法正確的是()A.空間站距地面的高度為eq\f(R,sinθ)-RB.空間站的運(yùn)行周期為2πReq\r(\f(R,GMsinθ))C.航天員每次經(jīng)歷“日全食”過(guò)程的時(shí)間為eq\f(2Rθ,sinθ)eq\r(\f(R,GMsinθ))D.航天員每天經(jīng)歷“日全食”的次數(shù)為eq\f(T0sinθ,πR)eq\r(\f(GMsinθ,R))答案AC解析空間站繞地球做勻速圓周運(yùn)動(dòng),設(shè)空間站的軌道半徑為r,由幾何關(guān)系知sinθ=eq\f(R,r),空
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個(gè)人之間農(nóng)業(yè)貸款借款合同
- 家長(zhǎng)與孩子二零二五年度家務(wù)勞動(dòng)責(zé)任履行協(xié)議
- 2025年度泳池救生員安全責(zé)任及應(yīng)急響應(yīng)規(guī)范協(xié)議
- 2025年度智慧城市建設(shè)預(yù)付款合作合同
- 二零二五年度酒店管理營(yíng)業(yè)執(zhí)照及品牌加盟轉(zhuǎn)讓合同
- 二零二五年度房屋維修基金頂賬返還協(xié)議書(shū)
- 二零二五年度外墻保溫涂料產(chǎn)品環(huán)保認(rèn)證與綠色標(biāo)識(shí)合同
- 二零二五年度女方婚前財(cái)產(chǎn)協(xié)議婚姻安全與婚姻風(fēng)險(xiǎn)規(guī)避合同
- 二零二五年度裝配行業(yè)產(chǎn)品研發(fā)終止合同
- 石家莊市2025年度勞動(dòng)合同電子化管理規(guī)范
- 幼兒園公開(kāi)課:大班語(yǔ)言《相反國(guó)》課件(優(yōu)化版)
- 水利設(shè)施維護(hù)投標(biāo)方案(技術(shù)標(biāo))
- 2024屆湖南省長(zhǎng)沙市湖南師大附中等校高三上學(xué)期月考(二)語(yǔ)文試題(解析版)
- 上海科技版小學(xué)二年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)全冊(cè)教案
- 氣缸磨損的測(cè)量說(shuō)課教案
- 《高鐵乘務(wù)安全管理及應(yīng)急處置》課程教案-崔藝琳編寫(xiě)
- 新課程標(biāo)準(zhǔn)2022版初中歷史考試題及答案
- 前言 馬克思主義中國(guó)化時(shí)代化的歷史進(jìn)程與理論成果
- 產(chǎn)品可靠性測(cè)試計(jì)劃
- 心理健康與職業(yè)生涯(中職)PPT完整全套教學(xué)課件
- 中國(guó)文藝美學(xué)要略·論著·《畫(huà)學(xué)心法問(wèn)答》
評(píng)論
0/150
提交評(píng)論