版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
CenterforSecurityandEmergingTechnology|1
ExecutiveSummary
Thispaperpresentsacasestudyonthemostimportanttechnologytohaveemergedinthepastdecade:extremeultraviolet(EUV)lithography.In2019,whenthefirst
commercialelectronicsenabledbyEUVwerereleased,thetechnologywashailedas“themachinethatsavedMoore’sLaw.
”1
Alloftoday’smostadvancedartificial
intelligence(AI)chips,smartphones,autonomousdrivingsystems,andhigh-
performancecomputerscontainsemiconductorsfabricatedusingEUVlithography.TheDutchcompanyASMLhasemergedasthesolesupplierofEUVmachines,winninga30-yearracethatgrantedthecompanyamonopolyonsellingthetoolessentialfor
fabricatingleading-edgesemiconductors
.2
However,whileASMLgetswell-deservedpraisefordevelopingandcommercializingEUV,thispaper’sfocusisontheresearchcommunitythatsupportedEUVfromthe
beginning:theacademicsinJapan,theUnitedStates,andEurope;thepublic-private
partnerships;theconferences;andtheindustrycollaborationthatlaidthegroundworkforEUVinthe1980sand1990s.Withoutthiscommunity,“themosttechnically
advancedtoolofanykindthat’severbeenmade”wouldnothavebeenpossible
.3
Thispapertracestheacademic,government,andindustryactorsinvolvedinamulti-decademoon-shotprojectthatultimatelysawEUVascendfromaspeculativeemerging
technologytothemechanismthatmakesNvidia'sleading-edgeAItrainingchipsandApple’slatestsmartphonepossible.
CarefulstudyoftheresearchcommunitythatsupportedEUVdevelopmentis
particularlyrelevantforpolicymakersandthesemiconductorindustrytoday.EUV
researchbeganinthe1980s,whentheU.S.semiconductorindustrywastryingtofendoffascendentJapanesefirmsamidsignificantgovernmentinterventiononbothsides.Atthesametime,theindustryrecognizedthatanewgenerationoflithographiclightsourceswouldbenecessarytofabricatefutureadvancedchipstomaintainMoore’s
law.Similarcircumstancesexisttoday,withpolicymakersintheUnitedStates,Europe,andAsiaengagedinonce-in-a-generationeffortstoprotectandpromotetheir
respectivesemiconductorindustries,allwhileascendentChinesefirmsattemptto
challengeindustryleaders.Meanwhile,theentiresemiconductorindustryrecognizesaslow-movingexistentialcrisis:rapidadvancesinAImustbesustainedby
correspondinglyrapidadvancesincomputationalpower.However,theendofMoore’slawisinsight,andnotevenEUVcansaveit
.4
ThedevelopmentofEUVreflectsmanyoftheemergingtechnologythemesobservedinpreviousCSETanalyses
.5
Researchcollaborationamongacademia,industry,andgovernmenthasoccurredfordecades,makingprogressonassociatedtechnologiesin
CenterforSecurityandEmergingTechnology|2
fieldssuchasmaterialsscience,plasmaphysics,andchemistry.Thisprogresshasbeendocumentedintheformofjournalarticlepublications,patentfilings,andconference
proceedings.Overtime,specifictechnologieswouldtransitionfromgovernmentlabstotheprivatesector,frequentlythroughpublic-privatepartnershipsandconsortia
formedtoaddressandovercometechnicalhurdles.Eventuallyaprivatefirmwouldassessamarketopportunity,makeinvestmentstoincreasethetechnology’smaturity,collaboratewithcustomers,andcommercializethetechnology.Governmentsupporthasalwaysbeenessentialatvariouspointsalongtheway.
BibliometricstudyoftheEUVresearchcommunityduringtheperiodwhenEUVwasstill“emerging”offersimportantlessonsforpolicymakersinterestedinidentifyingpromisingtechnologiestoday.Itshowshowacademicresearchtranslatesinto
scientificadvances,theroleofgovernmentandcorporatelabs,howinternationalresearchcollaborationsaccelerateinnovation,thepowerofpublic-private
partnerships,andtheneedforlargeamountsofpatientprivate-sectorcapital.Thispapercatalogsthismulti-decadepathofinnovation,identifyinginflectionpoints,
signals,andsub-innovationsalongtheway.Basedonthesefindings,thispaper
concludesbyintroducingasetofcriteriapolicymakerscouldusewhenattemptingtoidentifyfutureemergingtechnologies.
ThataDutchcompany,ASML,commercializedatechnologypioneeredinAmerica’snationallaboratoryecosystemandlargelyfundedbyIntelalsohasimportantlessons
forpolicymakersinterestedinprotectingandpromotingthenextemerging
technology
.6
Internationalcollaborationonemergingtechnologiesisinevitable,andguardrailsonthiscollaborationcomewithtrade-offs.Investmentsareanimportantsourceoffundingforinnovation,yetstrategicacquisitionscanfundamentallyalter
competitivedynamicsinheavilyconsolidatedindustries.Finally,emergingtechnologysupplychainsevolveandmatureintheprivatesector,whoseincentivesareprofitandreliability,notgeostrategiccompetitiveness.EUVtoolsaremonopolized,buttheEUVresearchcommunityandunderlyingsupplychainisglobalized.
CenterforSecurityandEmergingTechnology|3
TableofContents
ExecutiveSummary 1
TableofContents 3
Introduction 4
BackgroundonLithographyandEUV 4
TheDevelopmentofEUV 7
EUVOrigins 9
FundamentalResearchandTechnologyDemonstration(1981–1992) 10
AppliedResearchandTechnologyDevelopment(1993–1997) 11
ConsortiaandIndustry-LedTechnologyMaturation(1997–2009) 12
Collaboration:ConsortiumFormationandtheGlobalResearchAgenda 12
Competition:EmergingEUVLeadership 15
CommercializationandHigh-VolumeManufacturing(2010–Present) 19
TheEUVResearchCommunity:CharacterizingSignalsofEmergence 21
ResearchCommunityCompositionandParticipation 21
ResearchCommunityPublicationsandTechnicalAreasofFocus 22
Identifying,Protecting,andPromotingtheNextEmergingTechnology 24
IdentifyingtheNextEmergingTechnology 24
ProtectingandPromotingtheNextEmergingTechnology 26
PromotingEmergingTechnology 27
ProtectingEmergingTechnology 28
Conclusion 30
Author 31
Acknowledgments 31
Appendix1.EmergingTechnologyAttributes 32
Appendix2.Next-GenerationLithographyandLightSources 33
Appendix3.ComparingEUVPublicationIntensitybetweenSPIEandScopus/Webof
Science,1994–2017 36
Endnotes 37
CenterforSecurityandEmergingTechnology|4
Introduction
BackgroundonLithographyandEUV
Extremeultraviolet(EUV)lithographyisthelatestinnovationinalonglineoftechnicalaccomplishmentsthathavesupportedthesemiconductorindustry’sadherenceto
Moore’slawfromthe1960stopresent
.7
Insemiconductorfabrication,lithographyis
theprocessofimprintingcircuitryonsiliconwafersusinglight-sensitivechemicals.Thetechnologyfunctionsmuchliketheprocessofdevelopingaphotograph:Lightis
filteredthroughanimage(a“mask”inindustryjargon)containingacircuitpattern.Thatpatternisprojectedontothewafer,whichiscoveredinlight-sensitivechemicals
(“photoresist”).Thelightinteractswiththematerialsonthewafersurface,depositingthepatternasdesired.Thisprocessisrepeateddozensoftimesbeforethedesired
circuitpatternisfabricatedonthewafer(Figure1).
Figure1.ThePhotolithographyProcess
Source:Samsung,“Part4,DrawingStructuresinNano-Scale,”September22,2017,
/support/tools-resources/fabrication-process/eight-essential
-semiconductor-fabrication-processes-part-4-photolithography-laying-the-blueprint/.
CenterforSecurityandEmergingTechnology|5
ThislithographicprocesswasfirstdevelopedforuseinthesemiconductorindustryatFairchildSemiconductorandTexasInstrumentsinthelate1950s
.8
Overtime,as
circuitsshranktothenanometerlevel,theindustrywasforcedtoadoptunique
lithographic-specificlightsourcesandassociatedtechnologies,becausethevisiblespectrumoflightexceededthewidthofthedesiredcircuitpatterns.Specialtylightsourceswereintroduced,allowingfordeepultraviolet(DUV)lithography.However,thelimitsofDUVtechnologywerewellunderstoodasearlyasthe1980s
.9
Knowingthecomplexityofthetaskathand,thesemiconductorindustrybegantoexplorethescientificandtechnicalmeritsofnext-generationlithography(NGL)forfabricatingadvancedmicroelectronicsdecadesbeforeitwouldbenecessary.
EUVlithographyrepresentsadeparturefromearlierphotolithographyapproaches
usedbythesemiconductorindustryinseveralimportantrespects,particularlythelightsource.EUVlithographyfunctionsbyusinghigh-poweredlaserstoincinerate50,000tindrops(eachofwhichmeasures30micrometers,or30-millionthsofameter)per
secondtogenerateextremeultravioletlight
.10
BecauseEUVlightisabsorbedbybothairandglass,specialmirrors,amongthemostflawless(asin,blemish-free)materialseverproduced,thenguidethislightthroughmasksandontowafersinavacuum
chamber
.11
Ultimately,thisprocessimpartstheultrafinecircuitrynecessaryfortoday’smostadvancedsemiconductors(Figure2).
CenterforSecurityandEmergingTechnology|6
Figure2.ACross-SectionRepresentationofanEUVMachine
Source:MaartenSteinbuch,TomOomen,andHansVermeulen,“MotionControl,MechatronicsDesign,andMoore’sLaw,”IEEJJournalofIndustryApplications12,no.2(2022),
www.jstage.jst.go.jp/article/ieejjia/11/2/11_21006010/_article.
Fivethousandsuppliersprovide100,000parts,3,000cables,40,000bolts,andtwokilometersofhosingtomakeanEUVtool.Thetoolweighsabout180,000kilograms(200tons),andshipsin40containersspreadover20trucksandthreecargoplanes
.12
ASMLreportedlyonlymakes15percentoftheEUVtoolin-house,partnering
strategicallywithfirmsworldwidetosourcethehighestqualitycomponents
.13
ThishasresultedinauniquelyinternationalproductthatisDutchinnameonly.ThoughASMLdoesnottalkindetailpubliclyaboutitssuppliersandtheEUVsupplychain,Table1presentsalistofrecentknownsuppliersofspecificEUVsubcomponents.
CenterforSecurityandEmergingTechnology|7
Table1.SummaryofNotableEUVSubcomponentsandSuppliers
Component
Subcomponent
Supplier(s)
MaskBlanks
Deposition
Veeco(U.S.),AppliedMaterials(U.S.)
Inspection
KLA(U.S.),Lasertec(Japan)
Blanks
AGC(Japan),HoyaGroup(Japan)
Mask
Patterning
Patterning
IMSNanofabrication(Austria),NuFlareTechnology(Japan),JEOL(Japan)
Etching
AppliedMaterials(U.S.),TokyoElectron(Japan)
Cleaning
SUSSMicroTec(Germany),AppliedMaterials(U.S.),SCREEN(Japan)
Inspection
KLA(U.S.),HMI(U.S.,ownedbyASML),NuFlareTechnology(Japan),Lasertec(Japan)
DefectReview
Lasertec(Japan),Zeiss(Germany)
Repair
Zeiss(Germany),RAVE(U.S.,ownedbyBruker),Hitachi(Japan)
Mask
Handling
Pellicles
ASML(Netherlands),TeledyneDALSA(Canada),S&STech(SouthKorea)
MaskPod
Entegris(U.S.),GudengPrecision(Taiwan)
CoatersandDevelopers
TokyoElectron(Japan),LamResearch(U.S.)
Photoresist
Photoresist
JSR(Japan),Shin-EtsuChemical(Japan),TokyoOhkaKogyo(Japan),Inpria(U.S.,ownedbyJSR),DuPont(U.S.),LamResearch(U.S.),
Gelest(U.S.)
Optics
Mirrors
Zeiss(Germany),BerlinerGlas(Germany,ownedbyASML)
LightSource
Laser
Cymer(U.S.,ownedbyASML),TRUMPF(Germany)
Vessel
VDLEnablingTechnologies(Netherlands)
Wafer
Handling
WaferHandling
VDLEnablingTechnologies(Netherlands),BerlinerGlas(Germany,ownedbyASML)
Metrology
HENSOLDT(Germany),ASML(Netherlands)
Source:Author’scompilation
.14
EUVtoolsaresoessentialtothesemiconductorindustrythatASMLhasbecomeatechnologyindustryleader:companiesthatcanaffordanEUVtool,whichreportedlycosts$350millionasof2023,areabletomakethemostadvancedchipsinthe
world
.15
CompaniesthatcannotaffordEUVtools(ormustwaitwhilethebackordersarecleared)settleformakingsecond-bestchips.ThisrolehasalsoputASMLinthemiddleofgeopoliticaltensions.Chinesefirms,eagertomaketheworld’smost
advancedelectronics,arecurrentlyblockedfrompurchasingEUVtoolsonnationalsecuritygroundsbytheNetherlands
.16
TheDevelopmentofEUV
ThefollowingsectionsdescribethedevelopmentofEUVfromchronologicalandbibliometricperspectives.EUVdevelopmentoccurredinacademiclabs,corporate
CenterforSecurityandEmergingTechnology|8
researchanddevelopment(R&D)facilities,privatefirms,andpublic-private
partnershipsoverthecourseof30years.First,thechronologicalhistoryoftheEUVdevelopmentprogramispresented,highlightingkeycontributionsfromacademia,
government,andindustry,aswellasthecollectivetechnicalobstaclestheyworkedtoovercome.
SecondisabibliometricanalysisoftheEUVresearchagendaoverthecourseof30
years.MuchofEUVlithography’sdevelopmentoccurredinthepublicrecordinthe
formofpublications,conferenceproceedings,andpatentfilings.Theanalysisis
derivedfromabookbytheSocietyofPhoto-OpticalInstrumentationEngineers(SPIE),EUVLithography,publishedin2008andrevisedin2018
.17
Thismanualpresentsa
historyofEUV’sdevelopmentfromatechnicalperspectiveandwaslargelywrittenbythekeycontributorsactiveintheresearchcommunityfromthe1980stothepresent.Importantly,itprovidesacomprehensivelistoftheconsequentialpublications,actors,andnarrativehistory.
ThisbibliometricanalysisfocusesontheEUVresearchcommunity’saccomplishmentsduringthe30-yearperiodwhenEUVwasanemergingtechnology.Theanalysis
demonstratesspecificinflectionpointsandaccomplishmentsalongthewaythatcanbeusedassignalstoidentifyothertechnologiesthatmaybeemergingtoday.Italsoreviewspolicymakeroptionsforprotectingandpromotingemergingtechnologiesattheseinflectionpoints.
CenterforSecurityandEmergingTechnology|9
EUVOrigins
ThefirstperiodofEUVresearchwasfocusedondemonstratingthetechnicalpromiseandfeasibilityofusingsoftX-rayprojectionlithography(SXPL)insemiconductor
fabrication.Thenextperiodfocusedondevelopingtheimagingsystemsandsystem
integration,andidentifyingtechnicalbarriersandpotential“showstoppers.”Fromthelate1990sthrough2010,industrysteppedinandfocusedtheEUVresearchagendaonsystemdevelopmentinpreparationforhigh-volumemanufacturing(Figure3).From2010tothepresent,ASMLhasemergedasthesolesupplierofEUVsystems,
successfullyshippingitsfirstallegedly“production-ready”EUVlithographytoolsin
2013.However,itwasnotuntil2019thatthefirstelectronicdevicescontainingEUV-enabledsemiconductorsbecameavailable.
Figure3.TimelineofEUVDevelopmentandNotableActors
Source:NelsonM.FelixandDavidT.AttwoodJr.,“EUVLithographyPerspective:FromtheBeginningtoHVM(ConferencePresentation),”SPIEAdvancedLithography,SanJose,California,2020,video,75:00,April28,2020,/conference-proceedings-of-spie/11323/2572271/EUV-
Lithography-Perspective--from-the-beginning-to-HVM-Conference/10.1117/12.2572271.full#=.
CenterforSecurityandEmergingTechnology|10
FundamentalResearchandTechnologyDemonstration(1981-1992)
SoftX-rayreductionimaging,thetechnologythatwouldlaterbecomeEUV,wasan
ideaaheadofitstime.When,in1981,researchersintheUnitedStatesfirststarted
investigatingwhethersoftX-rayscouldbeusedtoimpartimages,theireffortsfocusedonapplicationsrelatedtoX-raymicroscopesandX-raytelescopes
.18
Infact,someoftheveryfirsttestsevaluatingsoftX-raysforimagingwereconductedattheMarshallSpaceFlightCenterinHuntsville,Alabama
.19
Atthistime,theleadingNGLtechnologywasX-rayproximitylithography(XPL).IBMintheUnitedStatesandNTTinJapan
wereactivelyevaluatingXPLforsemiconductordeviceproduction,thoughboth
companieswouldlaterabandonthetechnologyoncemanufacturingproblemswithXPLmasksweredeemedunresolvable
.20
HirooKinoshita,anemployeeatNTTwhoemergedasaleadingfigureintheEUV
lithographycommunity,firstbeganconsideringtheapplicabilityofthispioneering
researchforsemiconductordevicefabricationin1984
.21
CallinghisapproachX-ray
reductionlithography,KinoshitapresentedhisinitialfindingsattheJapanSocietyofAppliedPhysicsin1986tolittleacclaim:theaudience“seemedunwillingtobelievethatanimagehadactuallybeenmadebybendingxrays.
”22
ResearchersintheUnitedStatesexperiencedsimilarlynegativefeedbackinitially.EmployeesatAT&TBell
LaboratoriesapproachedtheU.S.governmentin1986,suggestingthatsoftX-raylasers,pairedwithmultilayerreflectors,couldserveasapracticalNGLtool.TheproposaltheypreparedfortheU.S.governmentreceivedan“extremelynegative”review,withthereviewersgoingsofarastosay,“Theprintingof0.1[micron]
features…wouldneverbeneededfor[silicon]integratedcircuits.
”23
By1988,researchersatLawrenceLivermoreNationalLaboratory(LLNL),partofthe
U.S.DepartmentofEnergy(DOE)nationallaboratorysystem,hadpickedupon
Kinoshita’sresearchandproposedthefirstSXPLsystem
.24
Theseresearchers,allof
whomwereaffiliatedwithLLNL’slaserfusionprogram,tookthispioneeringresearchonestepfurther,fabricatingcomponentsanddevelopingtechniquestoconduct
diagnosticstoverifySXPL’spromise
.25
Kinoshita’sresearchalignedwiththeseefforts,andin1989hepublishedapaperthatproposedoptimalSXPLexposurewavelengths,photomasks,andphotoresist
.26
Bytheearly1990s,researchersatSandiaNational
Laboratories(SNL),anotheroftheDOE’snationallabs,hadpartneredwithAT&TBellLabstodemonstratethefirstSXPLsystemwithalaserplasmasource.MomentumintheUnitedStatescontinuedtogrowastheU.S.DefenseAdvancedResearchProjectsAgency(DARPA)kickedoffitsadvancedlithographyprogramin1991
.27
Soon
thereafter,KinoshitaandseveralJapanesecolleaguespresentedarefined,and
CenterforSecurityandEmergingTechnology|11
technicallypromising,two-mirrorimagingsystemusingSXPLinpartnershipwith
TinsleyLaboratories,aU.S.firmresponsiblefortheopticsusedintheHubbleSpaceTelescope
.28
Finally,in1992,IntelCEOAndyGroveapproveda$200million
company-internalR&DinvestmentintoEUVlithography
.29
AppliedResearchandTechnologyDevelopment(1993-1997)
ThesecondphaseofR&Dbeganwithanamechange:in1993theSXPLresearch
communitydecidedtocoalesceontheterm“extremeultravioletlithography.”This
decisionhadseveralmotivations.First,thetermEUVdistinguishedthisapproachfromtheXPLresearchstillbeingexploredbyIBMandNTTatthetime
.30
Additionally,EUV
soundedlikeanextensionofDUV,themostcommonformofopticallithographytheninuse(Appendix2hasmoreinformationoneachoftheselithographicapproaches)
.31
TheadoptionofthetermalsoservedtoremovetheassociationwithX-raylithography(whichdidn’twork)andcreateanassociationwithDUVlithography(whichdidwork)
.32
TheU.S.NationalEUVLithographyProgramemergedin1994.Consistingof
researchersfromLLNL,SNL,LawrenceBerkeleyNationalLaboratory(LBNL),and
AT&TBellLabs,thisprogramwasfundedbyDOEandsteeredbyatechnicaladvisorygroupwithDARPA,DOE,andindustryrepresentatives.TeamsatLLNLandSNLbegandevelopingimagingsystemsandthefirsttoolleveragingEUVtechnologycapableofpreciseoverlay
.33
Developmentofmirrorimagingsystems(the“optics”)wasamajorfocusofresearchduringthisperiod,withteamsatSNL,TropelCorporation,AT&TBellLabs,andSiliconValleyGroup(SVG)LithographySystemsallcontributingtoadvancesintheUnited
States
.34
RelatedresearchinJapancontinuedtobeledbyNTT,withincreasingparticipationfromHitachiandNikon
.35
EuropeanresearchintoEUVlithographyalsobeganinearnestduringthisperiod.
Notably,anEUVresearchprogramcalledEXULT—whichcountedamongitsmembersASMLithography,theFOMInstituteforAtomicandMolecularPhysics,Sopra,Carl
ZeissAG,andDelftUniversityofTechnology—beganaresearchagendafocusedon
“high-powerdebris-free[light]sources,precisionopticsfabricationandmetrology,anddefect-freemasks.
”36
Europe’sfirstEUVworkshopwasorganizedandhostedbyZeissin1995
.37
TheconcentrationofEUVresearchintheNetherlandsatthistimewas
notable.TheNetherlandswasseenbyboththeU.S.andJapanesesemiconductor
industries,whichwereatthetimeengagedinfiercecompetition,asneutralground
.38
Asaresult,companiesinJapanandtheUnitedStatescollaboratedcloselywith
CenterforSecurityandEmergingTechnology|12
Europeanfirms.ThisheadstartwouldserveasaboosttoanemergingDutchcompanythenknownasASMLithography(laterASML).
ConsortiaandIndustry-LedTechnologyMaturation(1997-2009)
Bythemid-1990s,theInternationalTechnologyRoadmapforSemiconductorsforecast
thatanewlithographytechnologywouldneedtobereadyforhigh-volume
manufacturingby2005iftheindustrywastokeeppacewithMoore’slaw
.39
However,despiteyearsofexploratoryworkintoXPL(ledbyIBMintheUnitedStates),projectionelectronandionbeams(ledbyAT&TBellLabsintheUnitedStates),andshorterDUVwavelengths,nopromisingcandidatetechnologyhademerged
.40
Atthisinflection
point,DOE’sfundingfortheNationalEUVLithographyProgramended.Thisdecision,theresultofbroaderDOEbudgetreductionsinthe1990s,occurredatatimewhenitwascleartoindustrythat,ifanything,theEUVlithographyresearchagendarequiredevergreaterfunding.
ThedecisiontoceasefundingtheNationalEUVLithographyProgrampromptedInteltostepinandprovide“bridgefunding”tokeeptheU.S.EUVR&Dcommunitytogetheruntilamoreextensiveprogramcouldbedeveloped
.41
In1997,EUVLLC,ledbyIntel,wasformedtopushthisresearchagendaforwardintheUnitedStates.EUVLLC
quicklyestablishedacontractwithDOEthroughanovelnationalvirtuallaboratory
(NVL)structuretoensureclosealignmentwiththeresearchteamsatLLNL,LBNL,andSNLalreadyengagedinEUVresearch
.42
FollowingthecreationofEUVLLCintheUnitedStates,relatedconsortiainJapanandEuropesoonappeared.In1998,theJapaneseAssociationofSuper-Advanced
ElectronicsTechnologies(ASET)establishedanEUVresearchagenda,andEurope’sExtremeUVConceptLithographyDevelopmentSystem(EUCLIDES)wasformed
.43
UnliketheU.S.government,theJapanesegovernmentandtheEuropeanCommissionprovideddirectfinancialsupporttotheseEUVresearchagendas
.44
Collaboration:ConsortiumFormationandtheGlobalResearchAgenda
Withthecreationofthesepublic-privateconsortiaintheUnitedStates,Europe,andJapanin1997and1998,thesemiconductorindustrybegantopursueEUVresearchinamuchmoreconcertedmanner.EachoftheseconsortiacompetedandcollaboratedintheireffortstocommercializeEUVlithographysystems.Recognizingthemagnitudeofthetasksathand,theconsortiaestablishedmultiphaseresearchagendas.Whiletherewassubstantialoverlapamongthetechnicalresearchagendasofthethreeconsortia,
CenterforSecurityandEmergingTechnology|13
eachofthemexpectedthatproduction-readytoolswouldnotbeavailableuntilthemid-2000sattheearliest.
Beginningin1999,anannualinternationalEUVworkshopwasheld,rotatingbetweentheUnitedStates,Japan,andEurope.Thefunctionofthisworkshop,aswellasotherindustryconferencesandexchanges,servedtoadvanceoverallprogressonEUV
researchbysharingtheresultsoftheirPhaseIefforts(describedbelow).Each
consortiumexpectedthatPhaseIwouldtakethreeyearsandfollow-oneffortsaimedatdevelopingacommercialtoolwouldtakeaminimumofanotherthreeyears,withEUVLLCaimingforafab-readysystem“onthefloorin2004.”
Japan,ASET,andEUVDA
Japan’sEUVresearchprogramatASETconceivedofanine-yearresearchagenda
culminatingwithcommercialtoolsreadyforuseinthemid-2000s.Theprogram
focusedonthreelinesofeffortinPhaseI:theexposuresystem(includingmirrors,thelightsource,andthemechanicalsystem),multilayermasks(includingmaskpatterninganddefectdetection),andphotoresistdevelopment.ASET’sresearchagendawas
coordinatedbyHirooKinoshita(whobythistimehaddepartedNTTfortheHimeji
InstituteofTechnology),withparticipationfrom10semiconductormanufacturersandtwoequipmentsuppliers
.45
Insomerespects,JapanhadaheadstartinNGLresearch:JapanesefirmsCanonand
Nikon,wholedinworldwidelithographysalesinthemid-1990s,werepursuing
company-internalNGLdevelopmenteffortsaswell
.46
CanonhadinvestedheavilyintoXPL,whileNikonhadbetonelectron-projectionlithography(EPL).However,bylate2000,CanonhadannounceditwouldceaseitsXPLresearchin2001
.47
Thecompanyarguedthatthislineofresearchcouldberepurposed,givingitaheadstartinEUV
work,whileNikoncontinuedinvestigatingEPLandEUVsimultaneously
.48
JapanesefirmsandconsortiacontinuedtoexperiencehaltingprogressinEUVandotherNGLtechnologies,whichultimatelyencouragedclosercollaborationandtechnical
exchangesbetweenASETandEUVLLCin2001
.49
TheUnitedStatesandEUVLLC
TheEUVLLCresearchagendawasthemostwellfundedandambitiousofthethreeconsortia.InPhaseI,EUVLLCidentifiedEUVoptics,multilayercoating,metrology,
masks,lightsource,photoresist,anddevelopmentofanengineeringteststand(a
prototypeEUVsystem)as“majortasks.”Moreimportantthanfundingwasthelevelofparticipationfromindustryduringthisperiod:inadditiontotheaforementionedDOE
CenterforSecurityandEmergingTechnology|14
labsandIntel,ASML,Motorola,AMD,Micron,InfineonTechnologiesAG,andIBM
ultimatelyjoinedEUVLLC(Figure4)
.50
NocompanywasmorecommittedtoEUV
researchduringthisperiodthanIntel.PreliminaryestimatesfromIntelandthenationallabpartnersinEUVLLCputanannualbudgetataround$60million,anumberthat
wouldswellintothebillionsinthecomingdecadeasIntelcommitted“whatfeltlike
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 亮化工程施工合同范本
- 2025版礦山勞務(wù)合同范本:工期延誤賠償條款3篇
- 2025年白蟻防制與森林病蟲害防治合作合同3篇
- 展會布展合同
- 酒店服務(wù)員年終總結(jié)
- 北京體育職業(yè)學(xué)院《生態(tài)學(xué)數(shù)據(jù)繪圖入門實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 北京體育大學(xué)《商務(wù)禮儀主持藝術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版高端別墅物業(yè)管理服務(wù)合同標準6篇
- 槽輪切片機構(gòu)課程設(shè)計
- 北京師范大學(xué)《建筑智能環(huán)境學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024有限空間作業(yè)安全培訓(xùn)
- GB/T 44312-2024巡檢機器人集中監(jiān)控系統(tǒng)技術(shù)要求
- 統(tǒng)編版九下全冊古詩詞理解性默寫及答案
- 【市質(zhì)檢】福州市2024-2025學(xué)年高三年級第一次質(zhì)量檢測 物理試卷(含答案)
- CJT 195-2004 外層熔接型鋁塑復(fù)合管
- 工程圖學(xué)及計算機繪圖習(xí)題集
- 中國心力衰竭診斷和治療指南2024解讀
- 人教版三年級數(shù)學(xué)上冊第七單元《長方形和正方形》(大單元教學(xué)設(shè)計)
- DBJ50-T-417-2022 建筑施工高處墜落防治安全技術(shù)標準
- 五年級上冊英語教案-Unit 4 Lesson 21 What Year Is It-冀教版
- 學(xué)年上學(xué)期期末職業(yè)高中高二年級數(shù)學(xué)練習(xí)試卷3
評論
0/150
提交評論