版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年湖南省永州一中高三下學(xué)期質(zhì)量檢查數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.52.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,有下列說(shuō)法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個(gè)位置,使得;(3)設(shè)二面角的平面角為,則;(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.其中,正確說(shuō)法的個(gè)數(shù)是()A.1 B.2 C.3 D.43.拋物線C:y2=2px的焦點(diǎn)F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.4.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國(guó)數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.165.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.6.各項(xiàng)都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或7.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個(gè)“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為()A. B. C. D.8.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實(shí)數(shù)λ的最大值為()A. B. C. D.9.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.10.已知非零向量,滿足,,則與的夾角為()A. B. C. D.11.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.12.若復(fù)數(shù)(為虛數(shù)單位)的實(shí)部與虛部相等,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為_(kāi)_________.14.已知點(diǎn)是雙曲線漸近線上的一點(diǎn),則雙曲線的離心率為_(kāi)______15.在直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),若點(diǎn)在的平分線上,且,則向量的坐標(biāo)為_(kāi)__________.16.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)試求曲線y=sinx在矩陣MN變換下的函數(shù)解析式,其中M,N.18.(12分)已知為坐標(biāo)原點(diǎn),單位圓與角終邊的交點(diǎn)為,過(guò)作平行于軸的直線,設(shè)與終邊所在直線的交點(diǎn)為,.(1)求函數(shù)的最小正周期;(2)求函數(shù)在區(qū)間上的值域.19.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對(duì),不等式恒成立,求的取值范圍.20.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè).若在上恒成立,求實(shí)數(shù)的最大值.21.(12分)已知橢圓的離心率為是橢圓的一個(gè)焦點(diǎn),點(diǎn),直線的斜率為1.(1)求橢圓的方程;(1)若過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,是否存在直線使得?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.22.(10分)已知,函數(shù),(是自然對(duì)數(shù)的底數(shù)).(Ⅰ)討論函數(shù)極值點(diǎn)的個(gè)數(shù);(Ⅱ)若,且命題“,”是假命題,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】試題分析:拋物線焦點(diǎn)在軸上,開(kāi)口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.2.C【解析】
解:對(duì)于(1),當(dāng)CD⊥平面ABE,且E在AB的右上方時(shí),E到平面BCD的距離最大,當(dāng)CD⊥平面ABE,且E在AB的左下方時(shí),E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對(duì)于(2),連接DE,若存在某個(gè)位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進(jìn)一步可得AE=DE,此時(shí)E﹣ABD為正三棱錐,故(2)正確;對(duì)于(3),取AB中點(diǎn)O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對(duì)于(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,P到BC的距離為:dP﹣BC,因?yàn)椋?,所以點(diǎn)P的軌跡為橢圓.(4)正確.故選:C.點(diǎn)睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對(duì)應(yīng)的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過(guò)程中,需要認(rèn)真分析,得到結(jié)果,注意對(duì)知識(shí)點(diǎn)的靈活運(yùn)用.3.A【解析】
先由題和拋物線的性質(zhì)求得點(diǎn)P的坐標(biāo)和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點(diǎn)F1,0,準(zhǔn)線與x軸交點(diǎn)F'(-1,0),雙曲線半焦距c=1,設(shè)點(diǎn)Q(-1,y)ΔFPQ是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形,即PF所以PQ⊥拋物線的準(zhǔn)線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A本題考查了圓錐曲線綜合,分析題目,畫(huà)出圖像,熟悉拋物線性質(zhì)以及雙曲線的定義是解題的關(guān)鍵,屬于中檔題.4.D【解析】
根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.5.C【解析】試題分析:由題意知,當(dāng)時(shí),由,當(dāng)且僅當(dāng)時(shí),即等號(hào)是成立,所以函數(shù)的最小值為,當(dāng)時(shí),為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問(wèn)題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問(wèn)題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識(shí)點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問(wèn)題和解答問(wèn)題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.6.C【解析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項(xiàng)之間的關(guān)系,從而得到公比所滿足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因?yàn)閿?shù)列各項(xiàng)都是正數(shù),所以,而,故選C.點(diǎn)睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.7.D【解析】
設(shè)圓柱的底面半徑為,則其母線長(zhǎng)為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結(jié)合題中的結(jié)論即可求出該圓柱的內(nèi)切球體積.【詳解】設(shè)圓柱的底面半徑為,則其母線長(zhǎng)為,因?yàn)閳A柱的表面積公式為,所以,解得,因?yàn)閳A柱的體積公式為,所以,由題知,圓柱內(nèi)切球的體積是圓柱體積的,所以所求圓柱內(nèi)切球的體積為.故選:D本題考查圓柱的軸截面及表面積和體積公式;考查運(yùn)算求解能力;熟練掌握?qǐng)A柱的表面積和體積公式是求解本題的關(guān)鍵;屬于中檔題.8.D【解析】
利用等差數(shù)列通項(xiàng)公式推導(dǎo)出λ,由d∈[1,2],能求出實(shí)數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時(shí),實(shí)數(shù)λ取最大值為λ.故選D.本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.9.B【解析】
根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨取;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.10.B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.11.D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因?yàn)?,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.12.C【解析】
利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【詳解】,又的實(shí)部與虛部相等,,解得.故選:C本題主要考查復(fù)數(shù)的除法運(yùn)算,復(fù)數(shù)的概念運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫(huà)出可行域易知在點(diǎn)處取最小值為.故答案為:本題考查簡(jiǎn)單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.14.【解析】
先表示出漸近線,再代入點(diǎn),求出,則離心率易求.【詳解】解:的漸近線是因?yàn)樵跐u近線上,所以,故答案為:考查雙曲線的離心率的求法,是基礎(chǔ)題.15.【解析】
點(diǎn)在的平分線可知與向量共線,利用線性運(yùn)算求解即可.【詳解】因?yàn)辄c(diǎn)在的平線上,所以存在使,而,可解得,所以,故答案為:本題主要考查了向量的線性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.16.【解析】
先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解.【詳解】由是單位向量.若,,設(shè),則,,又,則,則,則,又,所以,(當(dāng)或時(shí)取等)即的取值范圍是,,故答案為:,.本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.y=2sin2x.【解析】
計(jì)算MN,計(jì)算得到函數(shù)表達(dá)式.【詳解】∵M(jìn),N,∴MN,∴在矩陣MN變換下,→∴曲線y=sinx在矩陣MN變換下的函數(shù)解析式為y=2sin2x.本題考查了矩陣變換,意在考查學(xué)生的計(jì)算能力.18.(1);(2).【解析】
(1)根據(jù)題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡(jiǎn)函數(shù),最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數(shù)的值域.【詳解】(1)因?yàn)?,,所以,,所以函?shù)的最小正周期為.(2)因?yàn)?,所以,所以,故函?shù)在區(qū)間上的值域?yàn)?本題考查正弦型函數(shù)的周期和值域,運(yùn)用到向量的坐標(biāo)運(yùn)算、降冪公式和二倍角的正弦公式,考查化簡(jiǎn)和計(jì)算能力.19.(1);(2).【解析】
(1)分類討論,,,即可得出結(jié)果;(2)先由題意,將問(wèn)題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當(dāng)時(shí),,所以;因?yàn)?,所以,解得,結(jié)合,所以的取值范圍是.本題主要考查含絕對(duì)值不等式的解法,以及由不等式恒成立求參數(shù)的問(wèn)題,熟記分類討論的思想、以及絕對(duì)值不等式的性質(zhì)即可,屬于??碱}型.20.(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【解析】
(Ⅰ)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時(shí),經(jīng)過(guò)分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】(Ⅰ)函數(shù)的定義域?yàn)?當(dāng)時(shí),.令,解得(舍去),.當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構(gòu)造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),在上恒成立.(ii)若,構(gòu)造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,,不合題意,,即.此時(shí)構(gòu)造函數(shù),.,,,,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實(shí)數(shù)的最大值為本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問(wèn)題,本題的難點(diǎn)在于不斷構(gòu)造新函數(shù)來(lái)求解,考查推理能力與運(yùn)算求解能力,屬于難題.21.(1)(1)不存在,理由見(jiàn)解析【解析】
(1)利用離心率和過(guò)點(diǎn),列出等式,即得解(1)設(shè)的方程為,與橢圓聯(lián)立,利用韋達(dá)定理表示中點(diǎn)N的坐標(biāo),用點(diǎn)坐標(biāo)表示,利用韋達(dá)關(guān)系代入,得到關(guān)于k的等式,即可得解.【詳解】(1)由題意,可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中地理 第二章 城市與環(huán)境 2.1 城市空間結(jié)構(gòu)城市區(qū)位分析教學(xué)實(shí)錄 湘教版必修2
- 九年級(jí)歷史上冊(cè) 第一單元 第3課 希臘羅馬的上古文明教學(xué)實(shí)錄 華東師大版
- 2024年版加工承攬合同具體內(nèi)容3篇
- 蔬菜溫室大棚長(zhǎng)期租賃合同
- 2024至2030年中國(guó)監(jiān)護(hù)儀行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024至2030年中國(guó)車牌自動(dòng)貼膜機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024至2030年中國(guó)圓形彈簧線盒行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024年度商場(chǎng)商城物業(yè)管理智能化改造合作協(xié)議3篇
- 2024年汽車租賃違約訴訟文書(shū)3篇
- 2024年國(guó)際物流節(jié)點(diǎn)建設(shè)與運(yùn)營(yíng)合同2篇
- WMAH開(kāi)關(guān)電源產(chǎn)品規(guī)格書(shū)
- 國(guó)開(kāi)電大本科《管理英語(yǔ)4》機(jī)考真題(第0005套)
- D500-D505 2016年合訂本防雷與接地圖集
- 贈(zèng)與合同模板
- 醫(yī)療整形美容門診病例模板
- 人教版七年級(jí)生物上冊(cè)期末試卷及答案
- 道路運(yùn)輸液體危險(xiǎn)貨物罐式車輛常壓罐體定期檢驗(yàn)規(guī)則
- GB/T 34112-2022信息與文獻(xiàn)文件(檔案)管理體系要求
- 圍手術(shù)期的抗凝治療ACCP-8指南解讀
- GB/T 26150-2019免洗紅棗
- GB/T 21933.1-2008鎳鐵鎳含量的測(cè)定丁二酮肟重量法
評(píng)論
0/150
提交評(píng)論