江蘇省泰州市泰興市重點中學2021-2022學年中考試題猜想數(shù)學試卷含解析_第1頁
江蘇省泰州市泰興市重點中學2021-2022學年中考試題猜想數(shù)學試卷含解析_第2頁
江蘇省泰州市泰興市重點中學2021-2022學年中考試題猜想數(shù)學試卷含解析_第3頁
江蘇省泰州市泰興市重點中學2021-2022學年中考試題猜想數(shù)學試卷含解析_第4頁
江蘇省泰州市泰興市重點中學2021-2022學年中考試題猜想數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省泰州市泰興市重點中學2021-2022學年中考試題猜想數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處2.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數(shù)為()A.0個 B.1個 C.2個 D.3個3.一組數(shù)據(jù)3、2、1、2、2的眾數(shù),中位數(shù),方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.24.正比例函數(shù)y=(k+1)x,若y隨x增大而減小,則k的取值范圍是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣15.若,代數(shù)式的值是A.0 B. C.2 D.6.已知:如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點G、D,若△AGC的周長為31cm,AB=20cm,則△ABC的周長為()A.31cm B.41cm C.51cm D.61cm7.如圖所示,將含有30°角的三角板的直角頂點放在相互平行的兩條直線其中一條上,若∠1=35°,則∠2的度數(shù)為()A.10° B.20° C.25° D.30°8.如圖所示的幾何體的左視圖是()A. B. C. D.9.下列方程中是一元二次方程的是()A. B.C. D.10.如圖,△A′B′C′是△ABC以點O為位似中心經(jīng)過位似變換得到的,若△A′B′C′的面積與△ABC的面積比是4:9,則OB′:OB為()A.2:3 B.3:2 C.4:5 D.4:9二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知一塊圓心角為270°的扇形鐵皮,用它做一個圓錐形的煙囪帽(接縫忽略不計),圓錐底面圓的直徑是60cm,則這塊扇形鐵皮的半徑是_____cm.12.因式分解:a3-a=______.13.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為_______.14.如圖,在兩個同心圓中,四條直徑把大圓分成八等份,若往圓面投擲飛鏢,則飛鏢落在黑色區(qū)域的概率是_______.15.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.16.在3×3方格上做填字游戲,要求每行每列及對角線上三個方格中的數(shù)字和都相等,若填在圖中的數(shù)字如圖所示,則x+y的值是_____.2x32y﹣34y三、解答題(共8題,共72分)17.(8分)如圖1,已知扇形MON的半徑為,∠MON=90°,點B在弧MN上移動,聯(lián)結BM,作OD⊥BM,垂足為點D,C為線段OD上一點,且OC=BM,聯(lián)結BC并延長交半徑OM于點A,設OA=x,∠COM的正切值為y.(1)如圖2,當AB⊥OM時,求證:AM=AC;(2)求y關于x的函數(shù)關系式,并寫出定義域;(3)當△OAC為等腰三角形時,求x的值.18.(8分)解不等式組:,并把解集在數(shù)軸上表示出來.19.(8分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數(shù)字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數(shù)的圖象上的概率.20.(8分)正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關系是______;(2)如圖2,當點E在DC邊上且不是DC的中點時,(1)中的結論是否成立?若成立給出證明;若不成立,說明理由;(3)如圖3,當點E,F(xiàn)分別在射線DC,DA上運動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.21.(8分)如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F(xiàn),G.(1)求點D沿三條圓弧運動到點G所經(jīng)過的路線長;(2)判斷線段GB與DF的長度關系,并說明理由.22.(10分)如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.(1)求證:四邊形ABED是菱形;(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.23.(12分)如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?24.如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

到三條相互交叉的公路距離相等的地點應是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內(nèi)角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內(nèi)角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質(zhì);這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.2、A【解析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.3、B【解析】試題解析:從小到大排列此數(shù)據(jù)為:1,2,2,2,3;數(shù)據(jù)2出現(xiàn)了三次最多為眾數(shù),2處在第3位為中位數(shù).平均數(shù)為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數(shù)是2,眾數(shù)是2,方差為0.1.故選B.4、D【解析】

根據(jù)正比例函數(shù)圖象與系數(shù)的關系列出關于k的不等式k+1<0,然后解不等式即可.【詳解】解:∵正比例函數(shù)y=(k+1)x中,y的值隨自變量x的值增大而減小,∴k+1<0,解得,k<-1;故選D.【點睛】本題主要考查正比例函數(shù)圖象在坐標平面內(nèi)的位置與k的關系.解答本題注意理解:直線y=kx所在的位置與k的符號有直接的關系.k>0時,直線必經(jīng)過一、三象限,y隨x的增大而增大;k<0時,直線必經(jīng)過二、四象限,y隨x的增大而減?。?、D【解析】

由可得,整體代入到原式即可得出答案.【詳解】解:,

則原式.

故選:D.【點睛】本題主要考查整式的化簡求值,熟練掌握整式的混合運算順序和法則及代數(shù)式的求值是解題的關鍵.6、C【解析】∵DG是AB邊的垂直平分線,∴GA=GB,△AGC的周長=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周長=AC+BC+AB=51cm,故選C.7、C【解析】分析:如圖,延長AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故選C.8、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.9、C【解析】

找到只含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,二次項系數(shù)不為0的整式方程的選項即可.【詳解】解:A、當a=0時,不是一元二次方程,故本選項錯誤;B、是分式方程,故本選項錯誤;C、化簡得:是一元二次方程,故本選項正確;D、是二元二次方程,故本選項錯誤;故選:C.【點睛】本題主要考查一元二次方程,熟練掌握一元二次方程的定義是解題的關鍵.10、A【解析】

根據(jù)位似的性質(zhì)得△ABC∽△A′B′C′,再根據(jù)相似三角形的性質(zhì)進行求解即可得.【詳解】由位似變換的性質(zhì)可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'與△ABC的面積的比4:9,∴△A'B'C'與△ABC的相似比為2:3,∴,故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.二、填空題(本大題共6個小題,每小題3分,共18分)11、40cm【解析】

首先根據(jù)圓錐的底面直徑求得圓錐的底面周長,然后根據(jù)底面周長等于展開扇形的弧長求得鐵皮的半徑即可.【詳解】∵圓錐的底面直徑為60cm,∴圓錐的底面周長為60πcm,∴扇形的弧長為60πcm,設扇形的半徑為r,則=60π,解得:r=40cm,故答案為:40cm.【點睛】本題考查了圓錐的計算,解題的關鍵是首先求得圓錐的底面周長,利用圓錐的底面周長等于扇形的弧長求解.12、a(a-1)(a+1)【解析】分析:先提取公因式a,再對余下的多項式利用平方差公式繼續(xù)分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).13、【解析】

設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質(zhì)及圖像可得出B的坐標,根據(jù)三角形的面積公式結合反比例函數(shù)系數(shù)k的幾何意義即可求解.【詳解】設△OAC和△BAD的直角邊長分別為a、b,則B點坐標為(a+b,a-b)∵點B在反比例函數(shù)y=在第一象限的圖象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【點睛】此題主要考查等腰直角三角形的面積求法和反比例函數(shù)k值的定義,解題的關鍵是熟知等腰直角三角形的性質(zhì)及反比例函數(shù)k值的性質(zhì).14、【解析】試題解析:∵兩個同心圓被等分成八等份,飛鏢落在每一個區(qū)域的機會是均等的,其中白色區(qū)域的面積占了其中的四等份,∴P(飛鏢落在白色區(qū)域)=.15、【解析】

仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點睛】本題考查了有理數(shù)的混合運算,熟練掌握運算法則是解答本題的關鍵.16、0【解析】

根據(jù)題意列出方程組,求出方程組的解即可得到結果.【詳解】解:根據(jù)題意得:,即,解得:,則x+y=﹣1+1=0,故答案為0【點睛】此題考查了解二元一次方程組,熟練掌握運算法則是解本題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2).();(3).【解析】分析:(1)先判斷出∠ABM=∠DOM,進而判斷出△OAC≌△BAM,即可得出結論;(2)先判斷出BD=DM,進而得出,進而得出AE=,再判斷出,即可得出結論;(3)分三種情況利用勾股定理或判斷出不存在,即可得出結論.詳解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如圖2,過點D作DE∥AB,交OM于點E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)當OA=OC時.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)當AO=AC時,則∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此種情況不存在.(ⅲ)當CO=CA時,則∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此種情況不存在.即:當△OAC為等腰三角形時,x的值為.點睛:本題是圓的綜合題,主要考查了相似三角形的判定和性質(zhì),圓的有關性質(zhì),勾股定理,等腰三角形的性質(zhì),建立y關于x的函數(shù)關系式是解答本題的關鍵.18、x≥【解析】分析:分別求解兩個不等式,然后按照不等式的確定方法求解出不等式組的解集,然后表示在數(shù)軸上即可.詳解:,由①得,x>﹣2;由②得,x≥,故此不等式組的解集為:x≥.在數(shù)軸上表示為:.點睛:本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.19、見解析;.【解析】

(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)找出點(x,y)在函數(shù)y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結果、、、、、、、、、、、;在所有12種等可能結果中,在函數(shù)的圖象上的有、、這3種結果,點在函數(shù)的圖象上的概率為.【點睛】本題考查的是用列表法或樹狀圖法求概率,一次函數(shù)圖象上點的坐標特征.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.20、(1)CH=AB.;(2)成立,證明見解析;(3)【解析】

(1)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(2)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(3)首先根據(jù)三角形三邊的關系,可得CK<AC+AK,據(jù)此判斷出當C、A、K三點共線時,CK的長最大;然后根據(jù)全等三角形判定的方法,判斷出△DFK≌△DEH,即可判斷出DK=DH,再根據(jù)全等三角形判定的方法,判斷出△DAK≌△DCH,即可判斷出AK=CH=AB;最后根據(jù)CK=AC+AK=AC+AB,求出線段CK長的最大值是多少即可.【詳解】解:(1)如圖1,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵點E是DC的中點,DE=EC,∴點F是AD的中點,∴AF=FD,∴EC=AF,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(2)當點E在DC邊上且不是DC的中點時,(1)中的結論CH=AB仍然成立.如圖2,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵AD=CD,DE=DF,∴AF=CE,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(3)如圖3,,∵CK≤AC+AK,∴當C、A、K三點共線時,CK的長最大,∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,∴∠KDF=∠HDE,∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,∴∠DFK=∠DEH,在△DFK和△DEH中,∴△DFK≌△DEH,∴DK=DH,在△DAK和△DCH中,∴△DAK≌△DCH,∴AK=CH又∵CH=AB,∴AK=CH=AB,∵AB=3,∴AK=3,AC=3,∴CK=AC+AK=AC+AB=,即線段CK長的最大值是.考點:四邊形綜合題.21、(1)6π;(2)GB=DF,理由詳見解析.【解析】

(1)根據(jù)弧長公式l=nπr180【詳解】解:(1)∵AD=2,∠DAE=90°,

∴弧DE的長l1=90×π×2180=π,

同理弧EF的長l2=90×π×4180=2π,弧FG的長l3=90×π×6180=3π,

所以,點D運動到點G所經(jīng)過的路線長l=l1+l2+l【點睛】本題考查弧長公式以及全等三角形的判定和性質(zhì),題目比較簡單,解題關鍵掌握是弧長公式.22、見解析【解析】試題分析:(1)先證得四邊形ABED是平行四邊形,又AB=AD,鄰邊相等的平行四邊形是菱形;(2)四邊形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.試題解析:梯形ABCD中,AD∥BC,∴四邊形ABE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論