廣東茂名市直屬學(xué)校2024-2025學(xué)年初三下學(xué)期(開(kāi)學(xué))考試數(shù)學(xué)試題試卷含解析_第1頁(yè)
廣東茂名市直屬學(xué)校2024-2025學(xué)年初三下學(xué)期(開(kāi)學(xué))考試數(shù)學(xué)試題試卷含解析_第2頁(yè)
廣東茂名市直屬學(xué)校2024-2025學(xué)年初三下學(xué)期(開(kāi)學(xué))考試數(shù)學(xué)試題試卷含解析_第3頁(yè)
廣東茂名市直屬學(xué)校2024-2025學(xué)年初三下學(xué)期(開(kāi)學(xué))考試數(shù)學(xué)試題試卷含解析_第4頁(yè)
廣東茂名市直屬學(xué)校2024-2025學(xué)年初三下學(xué)期(開(kāi)學(xué))考試數(shù)學(xué)試題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東茂名市直屬學(xué)校2024-2025學(xué)年初三下學(xué)期(開(kāi)學(xué))考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.-3的相反數(shù)是()A. B.3 C. D.-32.關(guān)于x的不等式x-b>0恰有兩個(gè)負(fù)整數(shù)解,則b的取值范圍是A. B. C. D.3.二次函數(shù)的最大值為()A.3 B.4C.5 D.64.的值為()A. B.- C.9 D.-95.如圖,直線、及木條在同一平面上,將木條繞點(diǎn)旋轉(zhuǎn)到與直線平行時(shí),其最小旋轉(zhuǎn)角為().A. B. C. D.6.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.17.下列運(yùn)算錯(cuò)誤的是()A.(m2)3=m6B.a(chǎn)10÷a9=aC.x3?x5=x8D.a(chǎn)4+a3=a78.已知圓錐的側(cè)面積為10πcm2,側(cè)面展開(kāi)圖的圓心角為36°,則該圓錐的母線長(zhǎng)為()A.100cm B.cm C.10cm D.cm9.有理數(shù)a、b在數(shù)軸上的位置如圖所示,則下列結(jié)論中正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.a(chǎn)﹣b<o(jì) D.a(chǎn)÷b>010.如圖,點(diǎn)O′在第一象限,⊙O′與x軸相切于H點(diǎn),與y軸相交于A(0,2),B(0,8),則點(diǎn)O′的坐標(biāo)是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)11.下列因式分解正確的是()A. B.C. D.12.如圖,在△ABC中,AC⊥BC,∠ABC=30°,點(diǎn)D是CB延長(zhǎng)線上的一點(diǎn),且BD=BA,則tan∠DAC的值為()A. B.2 C. D.3二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知兩圓相切,它們的圓心距為3,一個(gè)圓的半徑是4,那么另一個(gè)圓的半徑是_______.14.一組數(shù)據(jù)10,10,9,8,x的平均數(shù)是9,則這列數(shù)據(jù)的極差是_____.15.如圖,在Rt△AOB中,直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,得到△A′O′B,且反比例函數(shù)y=的圖象恰好經(jīng)過(guò)斜邊A′B的中點(diǎn)C,若SABO=4,tan∠BAO=2,則k=_____.16.(題文)如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是_____.17.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.18.如圖,在平面直角坐標(biāo)系中,點(diǎn)P(﹣1,a)在直線y=2x+2與直線y=2x+4之間,則a的取值范圍是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在梯形中,,,,,點(diǎn)為邊上一動(dòng)點(diǎn),作⊥,垂足在邊上,以點(diǎn)為圓心,為半徑畫圓,交射線于點(diǎn).(1)當(dāng)圓過(guò)點(diǎn)時(shí),求圓的半徑;(2)分別聯(lián)結(jié)和,當(dāng)時(shí),以點(diǎn)為圓心,為半徑的圓與圓相交,試求圓的半徑的取值范圍;(3)將劣弧沿直線翻折交于點(diǎn),試通過(guò)計(jì)算說(shuō)明線段和的比值為定值,并求出次定值.20.(6分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點(diǎn)P從B點(diǎn)出發(fā),以1cm/s的速度沿BC→CD→DA運(yùn)動(dòng)至A點(diǎn)停止,則從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)多少時(shí)間,△BEP為等腰三角形.21.(6分)某書店老板去圖書批發(fā)市場(chǎng)購(gòu)買某種圖書,第一次用1200元購(gòu)書若干本,并按該書定價(jià)7元出售,很快售完.由于該書暢銷,第二次購(gòu)書時(shí),每本書的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購(gòu)該書的數(shù)量比第一次多10本,當(dāng)按定價(jià)售出200本時(shí),出現(xiàn)滯銷,便以定價(jià)的4折售完剩余的書.(1)第一次購(gòu)書的進(jìn)價(jià)是多少元?(2)試問(wèn)該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?22.(8分)如圖,兒童游樂(lè)場(chǎng)有一項(xiàng)射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個(gè)頂點(diǎn)為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點(diǎn)P坐標(biāo)(n,0)(1)點(diǎn)C坐標(biāo)為;(2)求出小球飛行中最高點(diǎn)N的坐標(biāo)(用含有n的代數(shù)式表示);(3)驗(yàn)證:隨著n的變化,拋物線的頂點(diǎn)在函數(shù)y=x2的圖象上運(yùn)動(dòng);(4)若小球發(fā)射之后能夠直接入籃,球沒(méi)有接觸籃筐,請(qǐng)直接寫出n的取值范圍.23.(8分)為了解某校學(xué)生的課余興趣愛(ài)好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“舞蹈”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛(ài)好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計(jì)圖:根據(jù)統(tǒng)計(jì)圖所提供的倍息,解答下列問(wèn)題:(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若該校共有2000名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛(ài)好為“打球”的學(xué)生人數(shù);(4)現(xiàn)有愛(ài)好舞蹈的兩名男生兩名女生想?yún)⒓游璧干?,但只能選兩名學(xué)生,請(qǐng)你用列表或畫樹(shù)狀圖的方法,求出正好選到一男一女的概率.24.(10分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長(zhǎng)線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)25.(10分)某景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對(duì)門票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過(guò)10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用y1(元)及節(jié)假日門票費(fèi)用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.(1)a=,b=;(2)確定y2與x之間的函數(shù)關(guān)系式:(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到該景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?26.(12分)計(jì)算:2tan45°-(-)o-27.(12分)有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和-1;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1、0和1.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再?gòu)囊掖须S機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)P的坐標(biāo)為(x,y).(1)請(qǐng)用表格或樹(shù)狀圖列出點(diǎn)P所有可能的坐標(biāo);(1)求點(diǎn)P在一次函數(shù)y=x+1圖象上的概率.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

根據(jù)相反數(shù)的定義與方法解答.【詳解】解:-3的相反數(shù)為.故選:B.本題考查相反數(shù)的定義與求法,熟練掌握方法是關(guān)鍵.2、A【解析】

根據(jù)題意可得不等式恰好有兩個(gè)負(fù)整數(shù)解,即-1和-2,再結(jié)合不等式計(jì)算即可.【詳解】根據(jù)x的不等式x-b>0恰有兩個(gè)負(fù)整數(shù)解,可得x的負(fù)整數(shù)解為-1和-2綜合上述可得故選A.本題主要考查不等式的非整數(shù)解,關(guān)鍵在于非整數(shù)解的確定.3、C【解析】試題分析:先利用配方法得到y(tǒng)=﹣(x﹣1)2+1,然后根據(jù)二次函數(shù)的最值問(wèn)題求解.解:y=﹣(x﹣1)2+1,∵a=﹣1<0,∴當(dāng)x=1時(shí),y有最大值,最大值為1.故選C.考點(diǎn):二次函數(shù)的最值.4、A【解析】【分析】根據(jù)絕對(duì)值的意義進(jìn)行求解即可得.【詳解】表示的是的絕對(duì)值,數(shù)軸上表示的點(diǎn)到原點(diǎn)的距離是,即的絕對(duì)值是,所以的值為,故選A.【點(diǎn)睛】本題考查了絕對(duì)值的意義,熟練掌握絕對(duì)值的意義是解題的關(guān)鍵.5、B【解析】

如圖所示,過(guò)O點(diǎn)作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進(jìn)而求出將木條c繞點(diǎn)O旋轉(zhuǎn)到與直線a平行時(shí)的最小旋轉(zhuǎn)角.【詳解】如圖所示,過(guò)O點(diǎn)作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點(diǎn)與直線d重合時(shí),與直線a平行,旋轉(zhuǎn)角∠1+∠2=90°.故選B本題主要考查圖形的旋轉(zhuǎn)與平行線,解題的關(guān)鍵是熟練掌握平行線的性質(zhì).6、D【解析】

過(guò)A作AH∥CD交BC于H,根據(jù)題意得到∠BAE=90°,根據(jù)勾股定理計(jì)算即可.【詳解】∵S2=48,∴BC=4,過(guò)A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.本題考查了勾股定理,正方形的性質(zhì),平行四邊形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.7、D【解析】【分析】利用合并同類項(xiàng)法則,單項(xiàng)式乘以單項(xiàng)式法則,同底數(shù)冪的乘法、除法的運(yùn)算法則逐項(xiàng)進(jìn)行計(jì)算即可得.【詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯(cuò)誤,故選D.【點(diǎn)睛】本題考查了合并同類項(xiàng)、單項(xiàng)式乘以單項(xiàng)式、同底數(shù)冪的乘除法,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.8、C【解析】

圓錐的側(cè)面展開(kāi)圖是扇形,利用扇形的面積公式可求得圓錐的母線長(zhǎng).【詳解】設(shè)母線長(zhǎng)為R,則圓錐的側(cè)面積==10π,∴R=10cm,故選C.本題考查了圓錐的計(jì)算,熟練掌握扇形面積是解題的關(guān)鍵.9、C【解析】

利用數(shù)軸先判斷出a、b的正負(fù)情況以及它們絕對(duì)值的大小,然后再進(jìn)行比較即可.【詳解】解:由a、b在數(shù)軸上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故選:C.10、D【解析】

過(guò)O'作O'C⊥AB于點(diǎn)C,過(guò)O'作O'D⊥x軸于點(diǎn)D,由切線的性質(zhì)可求得O'D的長(zhǎng),則可得O'B的長(zhǎng),由垂徑定理可求得CB的長(zhǎng),在Rt△O'BC中,由勾股定理可求得O'C的長(zhǎng),從而可求得O'點(diǎn)坐標(biāo).【詳解】如圖,過(guò)O′作O′C⊥AB于點(diǎn)C,過(guò)O′作O′D⊥x軸于點(diǎn)D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點(diǎn)坐標(biāo)為(4,5),故選:D.本題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標(biāo)計(jì)算.11、C【解析】

依據(jù)因式分解的定義以及提公因式法和公式法,即可得到正確結(jié)論.【詳解】解:D選項(xiàng)中,多項(xiàng)式x2-x+2在實(shí)數(shù)范圍內(nèi)不能因式分解;

選項(xiàng)B,A中的等式不成立;

選項(xiàng)C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.

故選C.本題考查因式分解,解決問(wèn)題的關(guān)鍵是掌握提公因式法和公式法的方法.12、A【解析】

設(shè)AC=a,由特殊角的三角函數(shù)值分別表示出BC、AB的長(zhǎng)度,進(jìn)而得出BD、CD的長(zhǎng)度,由公式求出tan∠DAC的值即可.【詳解】設(shè)AC=a,則BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故選A.本題主要考查特殊角的三角函數(shù)值.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1或1【解析】

由兩圓相切,它們的圓心距為3,其中一個(gè)圓的半徑為4,即可知這兩圓內(nèi)切,然后分別從若大圓的半徑為4與若小圓的半徑為4去分析,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可求得另一個(gè)圓的半徑.【詳解】∵兩圓相切,它們的圓心距為3,其中一個(gè)圓的半徑為4,∴這兩圓內(nèi)切,∴若大圓的半徑為4,則另一個(gè)圓的半徑為:4-3=1,若小圓的半徑為4,則另一個(gè)圓的半徑為:4+3=1.故答案為:1或1此題考查了圓與圓的位置關(guān)系.此題難度不大,解題的關(guān)鍵是注意掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系,注意分類討論思想的應(yīng)用.14、1【解析】

先根據(jù)平均數(shù)求出x,再根據(jù)極差定義可得答案.【詳解】由題意知=9,解得:x=8,∴這列數(shù)據(jù)的極差是10-8=1,故答案為1.本題主要考查平均數(shù)和極差,熟練掌握平均數(shù)的計(jì)算得出x的值是解題的關(guān)鍵.15、1【解析】設(shè)點(diǎn)C坐標(biāo)為(x,y),作CD⊥BO′交邊BO′于點(diǎn)D,∵tan∠BAO=2,∴=2,∵S△ABO=?AO?BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵點(diǎn)C為斜邊A′B的中點(diǎn),CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x·y=3×2=1.故答案為1.16、12【解析】根據(jù)題意觀察圖象可得BC=5,點(diǎn)P在AC上運(yùn)動(dòng)時(shí),BP⊥AC時(shí),BP有最小值,觀察圖象可得,BP的最小值為4,即BP⊥AC時(shí)BP=4,又勾股定理求得CP=3,因點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A,根據(jù)函數(shù)的對(duì)稱性可得CP=AP=3,所以ΔABC的面積是117、50【解析】

由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得

=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,

∴=,

∵∠BCD=25°=,

∴∠AOD=2∠BCD=50°,

故答案為50本題考查角度的求解,解題的關(guān)鍵是利用垂徑定理.18、【解析】

計(jì)算出當(dāng)P在直線上時(shí)a的值,再計(jì)算出當(dāng)P在直線上時(shí)a的值,即可得答案.【詳解】解:當(dāng)P在直線上時(shí),,當(dāng)P在直線上時(shí),,則.故答案為此題主要考查了一次函數(shù)與一元一次不等式,關(guān)鍵是掌握函數(shù)圖象經(jīng)過(guò)的點(diǎn),必能使解析式左右相等.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)x=1(2)(1)【解析】

(1)作AM⊥BC、連接AP,由等腰梯形性質(zhì)知BM=4、AM=1,據(jù)此知tanB=tanC=,從而可設(shè)PH=1k,則CH=4k、PC=5k,再表示出PA的長(zhǎng),根據(jù)PA=PH建立關(guān)于k的方程,解之可得;(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9?8k,由△ABE∽△CEH得,據(jù)此求得k的值,從而得出圓P的半徑,再根據(jù)兩圓間的位置關(guān)系求解可得;(1)在圓P上取點(diǎn)F關(guān)于EH的對(duì)稱點(diǎn)G,連接EG,作PQ⊥EG、HN⊥BC,先證△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC=、cosC=,據(jù)此得出NC=k、HN=k及PN=PC?NC=k,繼而表示出EF、EH的長(zhǎng),從而出答案.【詳解】(1)作AM⊥BC于點(diǎn)M,連接AP,如圖1,∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,∴BM=4、AM=1,∴tanB=tanC=,∵PH⊥DC,∴設(shè)PH=1k,則CH=4k、PC=5k,∵BC=9,∴PM=BC?BM?PC=5?5k,∴AP=AM+PM=9+(5?5k),∵PA=PH,∴9+(5?5k)=9k,解得:k=1或k=,當(dāng)k=時(shí),CP=5k=>9,舍去;∴k=1,則圓P的半徑為1.(2)如圖2,由(1)知,PH=PE=1k、CH=4k、PC=5k,∵BC=9,∴BE=BC?PE?PC=9?8k,∵△ABE∽△CEH,∴,即,解得:k=,則PH=,即圓P的半徑為,∵圓B與圓P相交,且BE=9?8k=,∴<r<;(1)在圓P上取點(diǎn)F關(guān)于EH的對(duì)稱點(diǎn)G,連接EG,作PQ⊥EG于G,HN⊥BC于N,則EG=EF、∠1=∠1、EQ=QG、EF=EG=2EQ,∴∠GEP=2∠1,∵PE=PH,∴∠1=∠2,∴∠4=∠1+∠2=2∠1,∴∠GEP=∠4,∴△EPQ≌△PHN,∴EQ=PN,由(1)知PH=1k、HC=4k、PC=5k,∴sinC=、cosC=,∴NC=k、HN=k,∴PN=PC?NC=k,∴EF=EG=2EQ=2PN=k,EH=,∴,故線段EH和EF的比值為定值.此題考查全等三角形的性質(zhì),相似三角形的性質(zhì),解直角三角形,勾股定理,解題關(guān)鍵在于作輔助線.20、(1)證明見(jiàn)解析;(2)從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)2s或s或s或s時(shí),△BEP為等腰三角形.【解析】

(1)根據(jù)內(nèi)錯(cuò)角相等,得到兩邊平行,然后再根據(jù)三角形內(nèi)角和等于180度得到另一對(duì)內(nèi)錯(cuò)角相等,從而證得原四邊形是平行四邊形;(2)分別考慮P在BC和DA上的情況求出t的值.【詳解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四邊形ABCD是平行四邊形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD間的最短距離是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,設(shè)經(jīng)過(guò)ts時(shí),△BEP是等腰三角形,當(dāng)P在BC上時(shí),①BP=EB=2cm,t=2時(shí),△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC=,∴BP=cm,t=時(shí),△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,則BP=2BN,∴cosB=,∴,BN=cm,∴BP=,∴t=時(shí),△BEP是等腰三角形;當(dāng)P在CD上不能得出等腰三角形,∵AB、CD間的最短距離是4cm,CA⊥AB,CA=4cm,當(dāng)P在AD上時(shí),只能BE=EP=2cm,過(guò)P作PQ⊥BA于Q,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,設(shè)PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=,AP=5x=cm,∴t=5+5+3﹣=,答:從運(yùn)動(dòng)開(kāi)始經(jīng)過(guò)2s或s或s或s時(shí),△BEP為等腰三角形.本題主要考查平行四邊形的判定定理及一元二次方程的解法,要求學(xué)生能夠熟練利用邊角關(guān)系解三角形.21、賺了520元【解析】

(1)設(shè)第一次購(gòu)書的單價(jià)為x元,根據(jù)第一次用1200元購(gòu)書若干本,第二次購(gòu)書時(shí),每本書的批發(fā)價(jià)已比第一次提高了20%,他用1500元所購(gòu)該書的數(shù)量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根據(jù)(1)先求出第一次和第二次購(gòu)書數(shù)目,再根據(jù)賣書數(shù)目×(實(shí)際售價(jià)﹣當(dāng)次進(jìn)價(jià))求出二次賺的錢數(shù),再分別相加即可得出答案.【詳解】(1)設(shè)第一次購(gòu)書的單價(jià)為x元,根據(jù)題意得:+10=,解得:x=5,經(jīng)檢驗(yàn),x=5是原方程的解,答:第一次購(gòu)書的進(jìn)價(jià)是5元;(2)第一次購(gòu)書為1200÷5=240(本),第二次購(gòu)書為240+10=250(本),第一次賺錢為240×(7﹣5)=480(元),第二次賺錢為200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以兩次共賺錢480+40=520(元),答:該老板兩次售書總體上是賺錢了,共賺了520元.此題考查了分式方程的應(yīng)用,掌握這次活動(dòng)的流程,分析題意,找到關(guān)鍵描述語(yǔ),找到合適的等量關(guān)系是解決問(wèn)題的關(guān)鍵.22、(1)(3,3);(2)頂點(diǎn)N坐標(biāo)為(,);(3)詳見(jiàn)解析;(4)<n<.【解析】

(1)由正方形的性質(zhì)及A、B、D三點(diǎn)的坐標(biāo)求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,據(jù)此可得函數(shù)解析式,配方成頂點(diǎn)式即可得出答案;(3)將點(diǎn)N的坐標(biāo)代入y=x2,看是否符合解析式即可;(4)根據(jù)“小球發(fā)射之后能夠直接入籃,球沒(méi)有接觸籃筐”知:當(dāng)x=2時(shí)y>3,當(dāng)x=3時(shí)y<2,據(jù)此列出關(guān)于n的不等式組,解之可得.【詳解】(1)∵A(2,2),B(3,2),D(2,3),∴AD=BC=1,則點(diǎn)C(3,3),故答案為:(3,3);(2)把(0,0)(n,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線解析式為y=﹣x2+nx=﹣(x﹣)2+,∴頂點(diǎn)N坐標(biāo)為(,);(3)由(2)把x=代入y=x2=()2=,∴拋物線的頂點(diǎn)在函數(shù)y=x2的圖象上運(yùn)動(dòng);(4)根據(jù)題意,得:當(dāng)x=2時(shí)y>3,當(dāng)x=3時(shí)y<2,即,解得:<n<.本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及將實(shí)際問(wèn)題轉(zhuǎn)化為二次函數(shù)的問(wèn)題能力.23、(1)本次抽樣調(diào)查中的學(xué)生人數(shù)為100人;(2)補(bǔ)全條形統(tǒng)計(jì)圖見(jiàn)解析;(3)估計(jì)該校課余興趣愛(ài)好為“打球”的學(xué)生人數(shù)為800人;(4).【解析】

(1)用選“閱讀”的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);(2)先計(jì)算出選“舞蹈”的人數(shù),再計(jì)算出選“打球”的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖;(3)用2000乘以樣本中選“打球”的人數(shù)所占的百分比可估計(jì)該校課余興趣愛(ài)好為“打球”的學(xué)生人數(shù);(4)畫樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),再找出選到一男一女的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調(diào)查中的學(xué)生人數(shù)為100人;(2)選”舞蹈”的人數(shù)為100×10%=10(人),選“打球”的人數(shù)為100﹣30﹣10﹣20=40(人),補(bǔ)全條形統(tǒng)計(jì)圖為:(3)2000×=800,所以估計(jì)該校課余興趣愛(ài)好為“打球”的學(xué)生人數(shù)為800人;(4)畫樹(shù)狀圖為:共有12種等可能的結(jié)果數(shù),其中選到一男一女的結(jié)果數(shù)為8,所以選到一男一女的概率=.本題考查了條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖,列表法與樹(shù)狀圖法求概率,讀懂統(tǒng)計(jì)圖,從中找到有用的信息是解題的關(guān)鍵.本題中還用到了知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.24、見(jiàn)解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;

應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,

∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.

∵∠A=∠F,

∴∠BCD=∠ECG.

∴∠BCD-∠ECD=∠ECG-

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論