重慶市江津第四中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第1頁
重慶市江津第四中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第2頁
重慶市江津第四中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第3頁
重慶市江津第四中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第4頁
重慶市江津第四中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

重慶市江津第四中學(xué)2021-2022學(xué)年中考數(shù)學(xué)押題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.四個有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣32.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.3.如圖所示,點(diǎn)E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°4.如圖是一個正方體展開圖,把展開圖折疊成正方體后,“愛”字一面相對面上的字是()A.美 B.麗 C.泗 D.陽5.如圖,一次函數(shù)y=x﹣1的圖象與反比例函數(shù)的圖象在第一象限相交于點(diǎn)A,與x軸相交于點(diǎn)B,點(diǎn)C在y軸上,若AC=BC,則點(diǎn)C的坐標(biāo)為()A.(0,1) B.(0,2) C. D.(0,3)6.的相反數(shù)是()A. B.2 C. D.7.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣28.下列各數(shù)中,最小的數(shù)是()A.﹣4B.3C.0D.﹣29.一家商店將某種服裝按成本價提高40%后標(biāo)價,又以8折(即按標(biāo)價的80%)優(yōu)惠賣出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元10.下列計算,結(jié)果等于a4的是()A.a(chǎn)+3aB.a(chǎn)5﹣aC.(a2)2D.a(chǎn)8÷a2二、填空題(共7小題,每小題3分,滿分21分)11.九(5)班有男生27人,女生23人,班主任發(fā)放準(zhǔn)考證時,任意抽取一張準(zhǔn)考證,恰好是女生的準(zhǔn)考證的概率是________________.12.兩個完全相同的正五邊形都有一邊在直線l上,且有一個公共頂點(diǎn)O,其擺放方式如圖所示,則∠AOB等于______度.13.若不等式組x<4x<m的解集是x<4,則m14.李明早上騎自行車上學(xué),中途因道路施工推車步行了一段路,到學(xué)校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學(xué)校的路程是2900米,設(shè)他推車步行的時間為x分鐘,那么可列出的方程是_____________.15.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設(shè)一只螞蟻每秒爬行2cm,則它從下底面點(diǎn)A沿表面爬行至側(cè)面的B點(diǎn),最少要用_____秒鐘.16.如圖所示,在平面直角坐標(biāo)系中,已知反比例函數(shù)y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個頂點(diǎn)B、C恰好同時落在反比例函數(shù)的圖象上,則反比例函數(shù)的解析式是______________.17.如圖,在邊長為3的菱形ABCD中,點(diǎn)E在邊CD上,點(diǎn)F為BE延長線與AD延長線的交點(diǎn).若DE=1,則DF的長為________.三、解答題(共7小題,滿分69分)18.(10分)(操作發(fā)現(xiàn))(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點(diǎn)C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板斜邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=30°,連接AF,EF.①求∠EAF的度數(shù);②DE與EF相等嗎?請說明理由;(類比探究)(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點(diǎn)C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點(diǎn)D,在三角板另一直角邊上取一點(diǎn)F,使CF=CD,線段AB上取點(diǎn)E,使∠DCE=45°,連接AF,EF.請直接寫出探究結(jié)果:①∠EAF的度數(shù);②線段AE,ED,DB之間的數(shù)量關(guān)系.19.(5分)我們給出如下定義:順次連接任意一個四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)20.(8分)某校決定加強(qiáng)羽毛球、籃球、乒乓球、排球、足球五項(xiàng)球類運(yùn)動,每位同學(xué)必須且只能選擇一項(xiàng)球類運(yùn)動,對該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:運(yùn)動項(xiàng)目

頻數(shù)(人數(shù))

羽毛球

30

籃球

乒乓球

36

排球

足球

12

請根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學(xué)生選擇參加乒乓球運(yùn)動?21.(10分)某中學(xué)為了提高學(xué)生的消防意識,舉行了消防知識競賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎和紀(jì)念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:(1)這次知識競賽共有多少名學(xué)生?(2)“二等獎”對應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計圖補(bǔ)充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.22.(10分)經(jīng)過校園某路口的行人,可能左轉(zhuǎn),也可能直行或右轉(zhuǎn).假設(shè)這三種可能性相同,現(xiàn)有小明和小亮兩人經(jīng)過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.23.(12分)已知是上一點(diǎn),.如圖①,過點(diǎn)作的切線,與的延長線交于點(diǎn),求的大小及的長;如圖②,為上一點(diǎn),延長線與交于點(diǎn),若,求的大小及的長.24.(14分)如圖,在頂點(diǎn)為P的拋物線y=a(x-h)2+k(a≠0)的對稱軸1的直線上取點(diǎn)A(h,k+),過A作BC⊥l交拋物線于B、C兩點(diǎn)(B在C的左側(cè)),點(diǎn)和點(diǎn)A關(guān)于點(diǎn)P對稱,過A作直線m⊥l.又分別過點(diǎn)B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點(diǎn)A叫此拋物線的焦點(diǎn),BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點(diǎn)矩形.(1)直接寫出拋物線y=x2的焦點(diǎn)坐標(biāo)以及直徑的長.(2)求拋物線y=x2-x+的焦點(diǎn)坐標(biāo)以及直徑的長.(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點(diǎn)矩形的面積為2,求a的值.②直接寫出拋物線y=x2-x+的焦點(diǎn)短形與拋物線y=x2-2mx+m2+1公共點(diǎn)個數(shù)分別是1個以及2個時m的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.2、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.3、C【解析】

由平行線的判定定理可證得,選項(xiàng)A,B,D能證得AC∥BD,只有選項(xiàng)C能證得AB∥CD.注意掌握排除法在選擇題中的應(yīng)用.【詳解】A.∵∠3=∠A,本選項(xiàng)不能判斷AB∥CD,故A錯誤;B.∵∠D=∠DCE,∴AC∥BD.本選項(xiàng)不能判斷AB∥CD,故B錯誤;C.∵∠1=∠2,∴AB∥CD.本選項(xiàng)能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項(xiàng)不能判斷AB∥CD,故D錯誤.故選:C.【點(diǎn)睛】考查平行線的判定,掌握平行線的判定定理是解題的關(guān)鍵.4、D【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據(jù)這一特點(diǎn)作答.【詳解】解:正方體的表面展開圖,相對的面之間一定相隔一個正方形,“愛”字一面相對面上的字是“陽”;故本題答案為:D.【點(diǎn)睛】本題主要考查了正方體相對兩個面上的文字,注意正方體的空間圖形是解題的關(guān)鍵.5、B【解析】

根據(jù)方程組求出點(diǎn)A坐標(biāo),設(shè)C(0,m),根據(jù)AC=BC,列出方程即可解決問題.【詳解】由,解得或,

∴A(2,1),B(1,0),

設(shè)C(0,m),

∵BC=AC,

∴AC2=BC2,

即4+(m-1)2=1+m2,

∴m=2,

故答案為(0,2).【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)問題、勾股定理、方程組等知識,解題的關(guān)鍵是會利用方程組確定兩個函數(shù)的交點(diǎn)坐標(biāo),學(xué)會用方程的思想思考問題.6、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因?yàn)?2+2=0,所以﹣2的相反數(shù)是2,故選B.【點(diǎn)睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.7、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點(diǎn)睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關(guān)鍵.8、A【解析】

有理數(shù)大小比較的法則:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個負(fù)數(shù),絕對值大的其值反而小,據(jù)此判斷即可【詳解】根據(jù)有理數(shù)比較大小的方法,可得﹣4<﹣2<0<3∴各數(shù)中,最小的數(shù)是﹣4故選:A【點(diǎn)睛】本題考查了有理數(shù)大小比較的方法,解題的關(guān)鍵要明確:①正數(shù)都大于0;②負(fù)數(shù)都小于0;③正數(shù)大于一切負(fù)數(shù);④兩個負(fù)數(shù),絕對值大的其值反而小9、B【解析】試題分析:通過理解題意可知本題的等量關(guān)系,即每件作服裝仍可獲利=按成本價提高40%后標(biāo)價,又以8折賣出,根據(jù)這兩個等量關(guān)系,可列出方程,再求解.解:設(shè)這種服裝每件的成本是x元,根據(jù)題意列方程得:x+15=(x+40%x)×80%解這個方程得:x=125則這種服裝每件的成本是125元.故選B.考點(diǎn):一元一次方程的應(yīng)用.10、C【解析】

根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘進(jìn)行計算即可.【詳解】A.a(chǎn)+3a=4a,錯誤;B.a(chǎn)5和a不是同類項(xiàng),不能合并,故此選項(xiàng)錯誤;C.(a2)2=a4,正確;D.a(chǎn)8÷a2=a6,錯誤.故選C.【點(diǎn)睛】本題主要考查了同底數(shù)冪的乘除法,以及冪的乘方,關(guān)鍵是正確掌握計算法則.二、填空題(共7小題,每小題3分,滿分21分)11、23【解析】

用女生人數(shù)除以總?cè)藬?shù)即可.【詳解】由題意得,恰好是女生的準(zhǔn)考證的概率是2350故答案為:2350【點(diǎn)睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=mn12、108°【解析】

如圖,易得△OCD為等腰三角形,根據(jù)正五邊形內(nèi)角度數(shù)可求出∠OCD,然后求出頂角∠COD,再用360°減去∠AOC、∠BOD、∠COD即可【詳解】∵五邊形是正五邊形,∴每一個內(nèi)角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案為108°【點(diǎn)睛】本題考查正多邊形的內(nèi)角計算,分析出△OCD是等腰三角形,然后求出頂角是關(guān)鍵.13、m≥1.【解析】∵不等式組x<4x<m的解集是x∴m≥1,故答案為m≥1.14、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達(dá)出來,再結(jié)合步行和騎車所走總里程為2900米,列出方程即可.詳解:設(shè)他推車步行的時間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點(diǎn)睛:弄清本題中的等量關(guān)系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關(guān)鍵.15、2.5秒.【解析】

把此正方體的點(diǎn)A所在的面展開,然后在平面內(nèi),利用勾股定理求點(diǎn)A和B點(diǎn)間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因?yàn)榕佬新窂讲晃ㄒ?,故分情況分別計算,進(jìn)行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點(diǎn)睛】本題考查了勾股定理的拓展應(yīng)用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關(guān)鍵.16、【解析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設(shè)菱形平移后B的坐標(biāo)是(x,4),C的坐標(biāo)是(1+x,2).∵B、C落在反比例函數(shù)的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標(biāo)是(1,4),代入反比例函數(shù)的解析式得:k=1×4=4,即B、C落在反比例函數(shù)的圖象上,菱形的平移距離是1,反比例函數(shù)的解析式是y=.故答案為y=.點(diǎn)睛:本題考查了菱形的性質(zhì),用待定系數(shù)法求反比例函數(shù)的解析式,平移的性質(zhì)的應(yīng)用,主要考查學(xué)生的計算能力.17、1.1【解析】

求出EC,根據(jù)菱形的性質(zhì)得出AD∥BC,得出相似三角形,根據(jù)相似三角形的性質(zhì)得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點(diǎn)睛】此題主要考查了相似三角形的判定與性質(zhì),解題關(guān)鍵是根據(jù)菱形的性質(zhì)證明△DEF∽△CEB,然后根據(jù)相似三角形的性質(zhì)可求解.三、解答題(共7小題,滿分69分)18、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1【解析】試題分析:(1)①由等邊三角形的性質(zhì)得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,證明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF即可;(1)①由等腰直角三角形的性質(zhì)得出AC=BC,∠BAC=∠B=45°,證出∠ACF=∠BCD,由SAS證明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出結(jié)論.試題解析:解:(1)①∵△ABC是等邊三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE1+DB1=DE1,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.19、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點(diǎn):平行四邊形的判定與性質(zhì);中點(diǎn)四邊形.20、(1)24,1;(2)54;(3)360.【解析】

(1)根據(jù)選擇乒乓球運(yùn)動的人數(shù)是36人,對應(yīng)的百分比是30%,即可求得總?cè)藬?shù),然后利用百分比的定義求得a,用總?cè)藬?shù)減去其它組的人數(shù)求得b;(2)利用360°乘以對應(yīng)的百分比即可求得;(3)求得全校總?cè)藬?shù),然后利用總?cè)藬?shù)乘以對應(yīng)的百分比求解.【詳解】(1)抽取的人數(shù)是36÷30%=120(人),則a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圓心角為360°×=54°,故答案是:54;(3)全???cè)藬?shù)是120÷10%=1200(人),則選擇參加乒乓球運(yùn)動的人數(shù)是1200×30%=360(人).21、(1)200;(2)72°,作圖見解析;(3).【解析】

(1)用一等獎的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)用總?cè)藬?shù)乘以二等獎的人數(shù)所占的百分比求出二等獎的人數(shù),補(bǔ)全統(tǒng)計圖,再用360°乘以二等獎的人數(shù)所占的百分比即可求出“二等獎”對應(yīng)的扇形圓心角度數(shù);(3)用獲得一等獎和二等獎的人數(shù)除以總?cè)藬?shù)即可得出答案.【詳解】解:(1)這次知識競賽共有學(xué)生=200(名);(2)二等獎的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補(bǔ)圖如下:“二等獎”對應(yīng)的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎或二等獎”的概率是:=.【點(diǎn)睛】本題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖,利用統(tǒng)計圖獲取信息是解本題的關(guān)鍵.22、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出“至少有一人直行”的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩人之中至少有一人直行的結(jié)果數(shù)為5,所以兩人之中至少有一人直行的概率為.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數(shù)與總情況數(shù)之比.23、(Ⅰ),PA=4;(Ⅱ),【解析】

(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長度(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過點(diǎn)C作CD⊥AB于點(diǎn)D,易得AD=AO=CO,在Rt△DOC中易得CD的長,即可求解【詳解】解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.∴∠AOC=60°.∵PC是○O的切線,OC為○O的半徑,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如圖②,過點(diǎn)C作CD⊥AB于點(diǎn)D.∵△OAC是等邊三角形,CD⊥AB于點(diǎn)D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【點(diǎn)睛】此題主要考查圓的綜合應(yīng)用24、(1)4(1)4(3)(4)①a=±;②當(dāng)m=1-或m=5+時,1個公共點(diǎn),當(dāng)1-<m≤1或5≤m<5+時,1個公共點(diǎn),【解析】

(1)根據(jù)題意可以求得拋物線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論