版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省武威市第二十三中學(xué)2023-2024學(xué)年中考數(shù)學(xué)模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下列運(yùn)算結(jié)果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a22.在聯(lián)歡會(huì)上,甲、乙、丙3人分別站在不在同一直線上的三點(diǎn)A、B、C上,他們?cè)谕鎿尩首拥挠螒颍谒麄冎虚g放一個(gè)木凳,誰(shuí)先搶到凳子誰(shuí)獲勝,為使游戲公平,凳子應(yīng)放的最恰當(dāng)?shù)奈恢檬恰鰽BC的()A.三條高的交點(diǎn) B.重心 C.內(nèi)心 D.外心3.下列命題是真命題的個(gè)數(shù)有()①菱形的對(duì)角線互相垂直;②平分弦的直徑垂直于弦;③若點(diǎn)(5,﹣5)是反比例函數(shù)y=圖象上的一點(diǎn),則k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直線y=2x﹣1與直線y=3x﹣2交點(diǎn)的橫坐標(biāo).A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)4.下列圖形中既是中心對(duì)稱圖形又是軸對(duì)稱圖形的是()A. B. C. D.5.若二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣1,0),則方程的解為()A., B., C., D.,6.一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體是()A.三菱柱 B.三棱錐 C.長(zhǎng)方體 D.圓柱體7.如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°8.下列運(yùn)算正確的是()A. B.C. D.9.如圖1,在等邊△ABC中,D是BC的中點(diǎn),P為AB邊上的一個(gè)動(dòng)點(diǎn),設(shè)AP=x,圖1中線段DP的長(zhǎng)為y,若表示y與x的函數(shù)關(guān)系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.10.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結(jié)論的個(gè)數(shù)是()A.4 B.3 C.2 D.1二、填空題(共7小題,每小題3分,滿分21分)11.函數(shù)y=1x-1的自變量x的取值范圍是12.如圖,在平面直角坐標(biāo)系xOy中,△DEF可以看作是△ABC經(jīng)過(guò)若干次圖形的變化(平移、軸對(duì)稱、旋轉(zhuǎn))得到的,寫(xiě)出一種由△ABC得到△DEF的過(guò)程:_____.13.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點(diǎn)D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點(diǎn)P是AE上一個(gè)動(dòng)點(diǎn),則PF+PB的最小值為_(kāi)____.14.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點(diǎn)D,DE是BC的垂直平分線,點(diǎn)E是垂足.若DC=2,AD=1,則BE的長(zhǎng)為_(kāi)_____.15.有一組數(shù)據(jù):2,3,5,5,x,它們的平均數(shù)是10,則這組數(shù)據(jù)的眾數(shù)是.16.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣4,0)、B(0,3),對(duì)△AOB連續(xù)作旋轉(zhuǎn)變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是_____,第(2018)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是______.17.計(jì)算:a6÷a3=_________.三、解答題(共7小題,滿分69分)18.(10分)在平面直角坐標(biāo)系中,關(guān)于的一次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且平行于直線.(1)求該一次函數(shù)表達(dá)式;(2)若點(diǎn)Q(x,y)是該一次函數(shù)圖象上的點(diǎn),且點(diǎn)Q在直線的下方,求x的取值范圍.19.(5分)(問(wèn)題情境)張老師給愛(ài)好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問(wèn)題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過(guò)點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過(guò)點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過(guò)點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.20.(8分)在一個(gè)不透明的盒子中,裝有3個(gè)分別寫(xiě)有數(shù)字1,2,3的小球,他們的形狀、大小、質(zhì)地完全相同,攪拌均勻后,先從盒子里隨機(jī)抽取1個(gè)小球,記下小球上的數(shù)字后放回盒子,攪拌均勻后再隨機(jī)取出1個(gè)小球,再記下小球上的數(shù)字.(1)用列表法或樹(shù)狀圖法寫(xiě)出所有可能出現(xiàn)的結(jié)果;(2)求兩次取出的小球上的數(shù)字之和為奇數(shù)的概率P.21.(10分)(1)觀察猜想如圖①點(diǎn)B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為_(kāi)_____;(2)問(wèn)題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長(zhǎng);(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請(qǐng)直接寫(xiě)出BD的長(zhǎng).22.(10分)拋物線y=﹣x2+bx+c(b,c均是常數(shù))經(jīng)過(guò)點(diǎn)O(0,0),A(4,4),與x軸的另一交點(diǎn)為點(diǎn)B,且拋物線對(duì)稱軸與線段OA交于點(diǎn)P.(1)求該拋物線的解析式和頂點(diǎn)坐標(biāo);(2)過(guò)點(diǎn)P作x軸的平行線l,若點(diǎn)Q是直線上的動(dòng)點(diǎn),連接QB.①若點(diǎn)O關(guān)于直線QB的對(duì)稱點(diǎn)為點(diǎn)C,當(dāng)點(diǎn)C恰好在直線l上時(shí),求點(diǎn)Q的坐標(biāo);②若點(diǎn)O關(guān)于直線QB的對(duì)稱點(diǎn)為點(diǎn)D,當(dāng)線段AD的長(zhǎng)最短時(shí),求點(diǎn)Q的坐標(biāo)(直接寫(xiě)出答案即可).23.(12分)已知反比例函數(shù)的圖象經(jīng)過(guò)三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)當(dāng)y1﹣y2=4時(shí),求m的值;(2)如圖,過(guò)點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請(qǐng)寫(xiě)出點(diǎn)P坐標(biāo)(不需要寫(xiě)解答過(guò)程).24.(14分)已知:如圖,在四邊形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)多項(xiàng)式除以單項(xiàng)式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項(xiàng)法則計(jì)算可得.【詳解】A、(x3-x2+x)÷x=x2-x+1,此選項(xiàng)計(jì)算錯(cuò)誤;B、(-a2)?a3=-a5,此選項(xiàng)計(jì)算錯(cuò)誤;C、(-2x2)3=-8x6,此選項(xiàng)計(jì)算正確;D、4a2-(2a)2=4a2-4a2=0,此選項(xiàng)計(jì)算錯(cuò)誤.故選:C.【點(diǎn)睛】本題主要考查整式的運(yùn)算,解題的關(guān)鍵是掌握多項(xiàng)式除以單項(xiàng)式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項(xiàng)法則.2、D【解析】
為使游戲公平,要使凳子到三個(gè)人的距離相等,于是利用線段垂直平分線上的點(diǎn)到線段兩端的距離相等可知,要放在三邊中垂線的交點(diǎn)上.【詳解】∵三角形的三條垂直平分線的交點(diǎn)到中間的凳子的距離相等,∴凳子應(yīng)放在△ABC的三條垂直平分線的交點(diǎn)最適當(dāng).故選D.【點(diǎn)睛】本題主要考查了線段垂直平分線的性質(zhì)的應(yīng)用;利用所學(xué)的數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題是一種能力,要注意培養(yǎng).想到要使凳子到三個(gè)人的距離相等是正確解答本題的關(guān)鍵.3、C【解析】
根據(jù)菱形的性質(zhì)、垂徑定理、反比例函數(shù)和一次函數(shù)進(jìn)行判斷即可.【詳解】解:①菱形的對(duì)角線互相垂直是真命題;②平分弦(非直徑)的直徑垂直于弦,是假命題;③若點(diǎn)(5,-5)是反比例函數(shù)y=圖象上的一點(diǎn),則k=-25,是真命題;④方程2x-1=3x-2的解,可看作直線y=2x-1與直線y=3x-2交點(diǎn)的橫坐標(biāo),是真命題;故選C.【點(diǎn)睛】本題考查了命題與定理:判斷一件事情的語(yǔ)句,叫做命題.許多命題都是由題設(shè)和結(jié)論兩部分組成,題設(shè)是已知事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng),一個(gè)命題可以寫(xiě)成“如果…那么…”形式.一些命題的正確性是用推理證實(shí)的,這樣的真命題叫做定理.4、C【解析】
根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念,對(duì)各個(gè)選項(xiàng)進(jìn)行判斷,即可得到答案.【詳解】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故A錯(cuò)誤;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故B錯(cuò)誤;C、既是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故C正確;D、既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故D錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的概念,解題的關(guān)鍵是熟練掌握概念進(jìn)行分析判斷.5、C【解析】
∵二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣1,0),∴方程一定有一個(gè)解為:x=﹣1,∵拋物線的對(duì)稱軸為:直線x=1,∴二次函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為:(3,0),∴方程的解為:,.故選C.考點(diǎn):拋物線與x軸的交點(diǎn).6、A【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長(zhǎng)方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點(diǎn)睛】此題主要考查了學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查.7、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結(jié)合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點(diǎn)D沿EF折疊后與點(diǎn)B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點(diǎn)睛:這是一道有關(guān)矩形折疊的問(wèn)題,熟悉“矩形的四個(gè)內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關(guān)鍵.8、D【解析】【分析】根據(jù)同底數(shù)冪的乘法、積的乘方、完全平方公式、多項(xiàng)式乘法的法則逐項(xiàng)進(jìn)行計(jì)算即可得.【詳解】A.,故A選項(xiàng)錯(cuò)誤,不符合題意;B.,故B選項(xiàng)錯(cuò)誤,不符合題意;C.,故C選項(xiàng)錯(cuò)誤,不符合題意;D.,正確,符合題意,故選D.【點(diǎn)睛】本題考查了整式的運(yùn)算,熟練掌握同底數(shù)冪的乘法、積的乘方、完全平方公式、多項(xiàng)式乘法的運(yùn)算法則是解題的關(guān)鍵.9、D【解析】分析:由圖1、圖2結(jié)合題意可知,當(dāng)DP⊥AB時(shí),DP最短,由此可得DP最短=y最小=,這樣如圖3,過(guò)點(diǎn)P作PD⊥AB于點(diǎn)P,連接AD,結(jié)合△ABC是等邊三角形和點(diǎn)D是BC邊的中點(diǎn)進(jìn)行分析解答即可.詳解:由題意可知:當(dāng)DP⊥AB時(shí),DP最短,由此可得DP最短=y最小=,如圖3,過(guò)點(diǎn)P作PD⊥AB于點(diǎn)P,連接AD,∵△ABC是等邊三角形,點(diǎn)D是BC邊上的中點(diǎn),∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點(diǎn)P,此時(shí)DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點(diǎn)睛:“讀懂題意,知道當(dāng)DP⊥AB于點(diǎn)P時(shí),DP最短=”是解答本題的關(guān)鍵.10、B【解析】試題分析:由拋物線開(kāi)口方向得a<0,由拋物線的對(duì)稱軸位置可得b>0,由拋物線與y軸的交點(diǎn)位置可得c>0,則可對(duì)①進(jìn)行判斷;根據(jù)拋物線與x軸的交點(diǎn)個(gè)數(shù)得到b2﹣4ac>0,加上a<0,則可對(duì)②進(jìn)行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對(duì)③進(jìn)行判斷;設(shè)A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據(jù)拋物線與x軸的交點(diǎn)問(wèn)題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數(shù)的關(guān)系得到x1?x2=,于是OA?OB=﹣,則可對(duì)④進(jìn)行判斷.解:∵拋物線開(kāi)口向下,∴a<0,∵拋物線的對(duì)稱軸在y軸的右側(cè),∴b>0,∵拋物線與y軸的交點(diǎn)在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個(gè)交點(diǎn),∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯(cuò)誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設(shè)A(x1,0),B(x2,0),∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點(diǎn):二次函數(shù)圖象與系數(shù)的關(guān)系.二、填空題(共7小題,每小題3分,滿分21分)11、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>112、平移,軸對(duì)稱【解析】分析:根據(jù)平移的性質(zhì)和軸對(duì)稱的性質(zhì)即可得到由△OCD得到△AOB的過(guò)程.詳解:△ABC向上平移5個(gè)單位,再沿y軸對(duì)折,得到△DEF,故答案為:平移,軸對(duì)稱.點(diǎn)睛:考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),平移,軸對(duì)稱,解題時(shí)需要注意:平移的距離等于對(duì)應(yīng)點(diǎn)連線的長(zhǎng)度,對(duì)稱軸為對(duì)應(yīng)點(diǎn)連線的垂直平分線,旋轉(zhuǎn)角為對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線的夾角的大?。?3、【解析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關(guān)于直線AE對(duì)稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長(zhǎng).【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關(guān)于直線AE對(duì)稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長(zhǎng),∵∠CAB=180°-105°-45°=30°,設(shè)AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點(diǎn)睛】本題考查軸對(duì)稱-最短問(wèn)題,菱形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,學(xué)會(huì)利用軸對(duì)稱解決最短問(wèn)題.14、【解析】∵DE是BC的垂直平分線,∴DB=DC=2,∵BD是∠ABC的平分線,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案為.點(diǎn)睛:本題考查的是線段的垂直平分線的性質(zhì)、角平分線的性質(zhì),掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.15、1【解析】根據(jù)平均數(shù)為10求出x的值,再由眾數(shù)的定義可得出答案.解:由題意得,(2+3+1+1+x)=10,解得:x=31,這組數(shù)據(jù)中1出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)為1.故答案為1.16、(16,)(8068,)【解析】
利用勾股定理列式求出AB的長(zhǎng),再根據(jù)圖形寫(xiě)出第(5)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)即可;觀察圖形不難發(fā)現(xiàn),每3個(gè)三角形為一個(gè)循環(huán)組依次循環(huán),用2018除以3,根據(jù)商和余數(shù)的情況確定出第(2018)個(gè)三角形的直角頂點(diǎn)到原點(diǎn)O的距離,然后寫(xiě)出坐標(biāo)即可.【詳解】∵點(diǎn)A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是(4,);∵5÷3=1余2,∴第(5)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是(16,),∵2018÷3=672余2,∴第(2018)個(gè)三角形是第672組的第二個(gè)直角三角形,其直角頂點(diǎn)與第672組的第二個(gè)直角三角形頂點(diǎn)重合,∴第(2018)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是(8068,).故答案為:(16,);(8068,)【點(diǎn)睛】本題考查了坐標(biāo)與圖形變化-旋轉(zhuǎn),解題的關(guān)鍵是根據(jù)題意找出每3個(gè)三角形為一個(gè)循環(huán)組依次循環(huán).17、a1【解析】
根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相減計(jì)算即可【詳解】a6÷a1=a6﹣1=a1.故答案是a1【點(diǎn)睛】同底數(shù)冪的除法運(yùn)算性質(zhì)三、解答題(共7小題,滿分69分)18、(1);(2).【解析】
(1)由題意可設(shè)該一次函數(shù)的解析式為:,將點(diǎn)M(4,7)代入所設(shè)解析式求出b的值即可得到一次函數(shù)的解析式;(2)根據(jù)直線上的點(diǎn)Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結(jié)果.【詳解】解:(1)∵一次函數(shù)平行于直線,∴可設(shè)該一次函數(shù)的解析式為:,∵直線過(guò)點(diǎn)M(4,7),∴8+b=7,解得b=-1,∴一次函數(shù)的解析式為:y=2x-1;(2)∵點(diǎn)Q(x,y)是該一次函數(shù)圖象上的點(diǎn),∴y=2x-1,又∵點(diǎn)Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)的解析式以及一次函數(shù)與不等式的關(guān)系,屬于??碱}型,熟練掌握待定系數(shù)法與一次函數(shù)與不等式的關(guān)系是解題的關(guān)鍵.19、小軍的證明:見(jiàn)解析;小俊的證明:見(jiàn)解析;[變式探究]見(jiàn)解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過(guò)點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過(guò)點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過(guò)點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過(guò)點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問(wèn)題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問(wèn)題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn),∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長(zhǎng)之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長(zhǎng)之和(6+2)dm.【點(diǎn)睛】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì),根據(jù)題中小軍和小俊的思路進(jìn)行證明,故正確理解題意由此進(jìn)行后面的證明是解題的關(guān)鍵.20、(1見(jiàn)解析;(2).【解析】
(1)根據(jù)題意先畫(huà)出樹(shù)狀圖,得出所有可能出現(xiàn)的結(jié)果數(shù);
(2)根據(jù)(1)可得共有9種情況,兩次取出小球上的數(shù)字和為奇數(shù)的情況,再根據(jù)概率公式即可得出答案.【詳解】(1)列表得,(2)兩次取出的小球上的數(shù)字之和為奇數(shù)的共有4種,∴P兩次取出的小球上數(shù)字之和為奇數(shù)的概率P=.【點(diǎn)睛】此題可以采用列表法或者采用樹(shù)狀圖法,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.樹(shù)狀圖法適用于兩步或兩步以上完成的事件.解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)BC=BD+CE,(2);(3).【解析】
(1)證明△ADB≌△EAC,根據(jù)全等三角形的性質(zhì)得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數(shù)量關(guān)系;(2)過(guò)D作DE⊥AB,交BA的延長(zhǎng)線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據(jù)勾股定理即可得到BD的長(zhǎng);(3)過(guò)D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據(jù)全等三角形的性質(zhì)得到CE=AF,ED=DF,設(shè)AF=x,DF=y,根據(jù)CB=4,AB=2,列出方程組,求出的值,根據(jù)勾股定理即可求出BD的長(zhǎng).【詳解】解:(1)觀察猜想結(jié)論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問(wèn)題解決如圖②,過(guò)D作DE⊥AB,交BA的延長(zhǎng)線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如圖③,過(guò)D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,設(shè)AF=x,DF=y,則,解得:∴BF=2+1=3,DF=3,由勾股定理得:【點(diǎn)睛】考查全等三角形的判定與性質(zhì),勾股定理,二元一次方程組的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.22、(1)y=﹣(x﹣)2+;(,);(2)①(﹣,)或(,);②(0,);【解析】
1)把0(0,0),A(4,4v3)的坐標(biāo)代入y=﹣x2+bx+c,轉(zhuǎn)化為解方程組即可.(2)先求出直線OA的解析式,點(diǎn)B坐標(biāo),拋物線的對(duì)稱軸即可解決問(wèn)題.(3)①如圖1中,點(diǎn)O關(guān)于直線BQ的對(duì)稱點(diǎn)為點(diǎn)C,當(dāng)點(diǎn)C恰好在直線l上時(shí),首先證明四邊形BOQC是菱形,設(shè)Q(m,),根據(jù)OQ=OB=5,可得方程,解方程即可解決問(wèn)題.②如圖2中,由題意點(diǎn)D在以B為圓心5為半徑的OB上運(yùn)動(dòng),當(dāng)A,D、B共線時(shí),線段AD最小,設(shè)OD與BQ交于點(diǎn)H.先求出D、H兩點(diǎn)坐標(biāo),再求出直線BH的解析式即可解決問(wèn)題.【詳解】(1)把O(0,0),A(4,4)的坐標(biāo)代入y=﹣x2+bx+c,得,解得,∴拋物線的解析式為y=﹣x2+5x=﹣(x﹣)2+.所以拋物線的頂點(diǎn)坐標(biāo)為(,);(2)①由題意B(5,0),A(4,4),∴直線OA的解析式為y=x,AB==7,∵拋物線的對(duì)稱軸x=,∴P(,).如圖1中,點(diǎn)O關(guān)于直線BQ的對(duì)稱點(diǎn)為點(diǎn)C,當(dāng)點(diǎn)C恰好在直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版再婚夫妻離婚規(guī)定3篇
- 梅河口康美職業(yè)技術(shù)學(xué)院《數(shù)學(xué)課程與教學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 眉山藥科職業(yè)學(xué)院《擴(kuò)聲技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年物流運(yùn)輸服務(wù)合同標(biāo)的詳細(xì)描述
- 馬鞍山學(xué)院《形態(tài)學(xué)整合實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年勞動(dòng)合同樣本新編3篇
- 2024年標(biāo)準(zhǔn)化電腦與辦公設(shè)備采購(gòu)協(xié)議范例版B版
- 漯河醫(yī)學(xué)高等??茖W(xué)?!堵殬I(yè)教育經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 漯河食品職業(yè)學(xué)院《植物營(yíng)養(yǎng)診斷與施肥(實(shí)驗(yàn))》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年創(chuàng)新型門(mén)面房租賃合作協(xié)議6篇
- NB∕T 13007-2021 生物柴油(BD100)原料 廢棄油脂
- GB/T 20624.2-2006色漆和清漆快速變形(耐沖擊性)試驗(yàn)第2部分:落錘試驗(yàn)(小面積沖頭)
- GB/T 12771-2019流體輸送用不銹鋼焊接鋼管
- GB/T 10125-2012人造氣氛腐蝕試驗(yàn)鹽霧試驗(yàn)
- 維修電工-基于7812穩(wěn)壓電路(中級(jí))-動(dòng)畫(huà)版
- PV測(cè)試方法簡(jiǎn)介-IV
- 病理學(xué)實(shí)驗(yàn)切片考試圖片授課課件
- 2021離婚協(xié)議書(shū)電子版免費(fèi)
- 國(guó)家開(kāi)放大學(xué)《組織行為學(xué)》章節(jié)測(cè)試參考答案
- 電子課件機(jī)械基礎(chǔ)(第六版)完全版
- 臨沂十二五城市規(guī)劃研究專題課件
評(píng)論
0/150
提交評(píng)論