版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢市硚口區(qū)2024-2025學年下學期第二次月考初三數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.點P(﹣2,5)關于y軸對稱的點的坐標為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)2.小明同學在學習了全等三角形的相關知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上B.角平分線上的點到這個角兩邊的距離相等C.三角形三條角平分線的交點到三條邊的距離相等D.以上均不正確3.弘揚社會主義核心價值觀,推動文明城市建設.根據(jù)“文明創(chuàng)建工作評分細則”,l0名評審團成員對我市2016年度文明刨建工作進行認真評分,結(jié)果如下表:人數(shù)2341分數(shù)80859095則得分的眾數(shù)和中位數(shù)分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.54.如果關于x的方程沒有實數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..5.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.6.方程x-2x-3A.x=﹣1 B.x=1 C.x=2 D.x=37.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°8.石墨烯是現(xiàn)在世界上最薄的納米材料,其理論厚度僅是0.00000000034m,這個數(shù)用科學記數(shù)法表示正確的是(
)A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m9.若,,則的值是()A.2 B.﹣2 C.4 D.﹣410.下列方程中,沒有實數(shù)根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1=0 D.x2﹣2x+2=0二、填空題(共7小題,每小題3分,滿分21分)11.如圖,把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數(shù)是_____°.12.為有效開展“陽光體育”活動,某校計劃購買籃球和足球共50個,購買資金不超過3000元.若每個籃球80元,每個足球50元,則籃球最多可購買_____個.13.如圖,直線l經(jīng)過⊙O的圓心O,與⊙O交于A、B兩點,點C在⊙O上,∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.14.寫出一個一次函數(shù),使它的圖象經(jīng)過第一、三、四象限:______.15.對于任意非零實數(shù)a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.16.若正多邊形的一個內(nèi)角等于120°,則這個正多邊形的邊數(shù)是_____.17.大連市內(nèi)與莊河兩地之間的距離是160千米,若汽車以平均每小時80千米的速度從大連市內(nèi)開往莊河,則汽車距莊河的路程y(千米)與行駛的時間x(小時)之間的函數(shù)關系式為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側(cè)),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)?的圖象.(1)若點A的坐標為(1,0).①求拋物線l的表達式,并直接寫出當x為何值時,函數(shù)?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數(shù)?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標;(2)當2<x<3時,若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.19.(5分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設BD為xcm,CE為ycm.小聰根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.下面是小聰?shù)奶骄窟^程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補全表格上相關數(shù)值保留一位小數(shù)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;結(jié)合畫出的函數(shù)圖象,解決問題:當線段BD是線段CE長的2倍時,BD的長度約為_____cm.20.(8分)如圖,兩座建筑物的水平距離為.從點測得點的仰角為53°,從點測得點的俯角為37°,求兩座建筑物的高度(參考數(shù)據(jù):21.(10分)在汕頭市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,電子白板的價格是電腦的3倍,購買5臺電腦和10臺電子白板需要17.5萬元,求每臺電腦、每臺電子白板各多少萬元?22.(10分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.23.(12分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和1.B布袋中有三個完全相同的小球,分別標有數(shù)字﹣1,﹣1和﹣2.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點Q的一個坐標為(x,y).(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;(1)求點Q落在直線y=﹣x﹣1上的概率.24.(14分)解方程:-=1
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)關于y軸對稱點的坐標特點:橫坐標互為相反數(shù),縱坐標不變可得答案.【詳解】點關于y軸對稱的點的坐標為,故選:D.本題主要考查了平面直角坐標系中點的對稱,熟練掌握點的對稱特點是解決本題的關鍵.2、A【解析】
過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據(jù)角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上),故選A.本題主要考查了基本作圖,關鍵是掌握角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上這一判定定理.3、A【解析】找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),可得答案.解:在這一組數(shù)據(jù)中90是出現(xiàn)次數(shù)最多的,故眾數(shù)是90;排序后處于中間位置的那個數(shù),那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是87.5;故選:A.“點睛”本題考查了眾數(shù)、中位數(shù)的知識,掌握各知識點的概念是解答本題的關鍵.注意中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).4、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關于x的方程x1+1x+c=0沒有實數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關系是解題的關鍵.5、D【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.6、B【解析】
觀察可得最簡公分母是(x-3)(x+1),方程兩邊乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.【詳解】方程的兩邊同乘(x?3)(x+1),得(x?2)(x+1)=x(x?3),x2解得x=1.檢驗:把x=1代入(x?3)(x+1)=-4≠0.∴原方程的解為:x=1.故選B.本題考查的知識點是解分式方程,解題關鍵是注意解得的解要進行檢驗.7、C【解析】
根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.本題考查三角形內(nèi)角和與兩條直線平行內(nèi)錯角相等.8、C【解析】試題分析:根據(jù)科學記數(shù)法的概念可知:用科學記數(shù)法可將一個數(shù)表示的形式,所以將1.11111111134用科學記數(shù)法表示,故選C.考點:科學記數(shù)法9、D【解析】因為,所以,因為,故選D.10、D【解析】
分別計算各方程的根的判別式的值,然后根據(jù)判別式的意義判定方程根的情況即可.【詳解】A、△=(﹣2)2﹣4×1×0=4>0,方程有兩個不相等的實數(shù)根,所以A選項錯誤;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有兩個不相等的實數(shù)根,所以B選項錯誤;C、△=(﹣2)2﹣4×1×1=0,方程有兩個相等的實數(shù)根,所以C選項錯誤;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程沒有實數(shù)根,所以D選項正確.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
由旋轉(zhuǎn)的性質(zhì)可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質(zhì)可求∠ACA'=1°=∠B′CB.【詳解】解:∵把△ABC繞點C順時針旋轉(zhuǎn)得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.本題考查了旋轉(zhuǎn)的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關鍵.12、1【解析】
設購買籃球x個,則購買足球個,根據(jù)總價單價購買數(shù)量結(jié)合購買資金不超過3000元,即可得出關于x的一元一次不等式,解之取其中的最大整數(shù)即可.【詳解】設購買籃球x個,則購買足球個,根據(jù)題意得:,解得:.為整數(shù),最大值為1.故答案為1.本題考查了一元一次不等式的應用,根據(jù)各數(shù)量間的關系,正確列出一元一次不等式是解題的關鍵.13、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°14、y=x﹣1(答案不唯一)【解析】一次函數(shù)圖象經(jīng)過第一、三、四象限,則可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).15、【解析】試題分析:根據(jù)已知數(shù)字等式得出變化規(guī)律,即可得出答案:∵,,,,…,∴。16、6【解析】試題分析:設所求正n邊形邊數(shù)為n,則120°n=(n﹣2)?180°,解得n=6;考點:多邊形內(nèi)角與外角.17、y=160﹣80x(0≤x≤2)【解析】
根據(jù)汽車距莊河的路程y(千米)=原來兩地的距離﹣汽車行駛的距離,解答即可.【詳解】解:∵汽車的速度是平均每小時80千米,∴它行駛x小時走過的路程是80x,∴汽車距莊河的路程y=160﹣80x(0≤x≤2),故答案為:y=160﹣80x(0≤x≤2).本題考查了根據(jù)實際問題確定一次函數(shù)的解析式,找到所求量的等量關系是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)①當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大,②P(,);(2)當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數(shù)法求拋物線的解析式,由對稱性求點B的坐標,根據(jù)圖象寫出函數(shù)?的值y隨x的增大而增大(即呈上升趨勢)的x的取值;②如圖2,作輔助線,構建對稱點F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設AD=a,根據(jù)QE=2FD列方程可求得a的值,并計算P的坐標;(2)先令y=0求拋物線與x軸的兩個交點坐標,根據(jù)圖象中呈上升趨勢的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點A在點B的左側(cè),∴h>0,∴h=3,∴拋物線l的表達式為:y=(x﹣3)2﹣2,∴拋物線的對稱軸是:直線x=3,由對稱性得:B(5,0),由圖象可知:當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點D,延長PD交拋物線l于點F,作QE⊥x軸于E,則PD∥QE,由對稱性得:DF=PD,∵S△ABQ=2S△ABP,∴AB?QE=2×AB?PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,設AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵點F、Q在拋物線l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)當y=0時,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵點A在點B的左側(cè),且h>0,∴A(h﹣2,0),B(h+2,0),如圖3,作拋物線的對稱軸交拋物線于點C,分兩種情況:①由圖象可知:圖象f在AC段時,函數(shù)f的值隨x的增大而增大,則,∴3≤h≤4,②由圖象可知:圖象f點B的右側(cè)時,函數(shù)f的值隨x的增大而增大,即:h+2≤2,h≤0,綜上所述,當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.考點:待定系數(shù)法求二次函數(shù)的解析式;二次函數(shù)的增減性問題、三角形相似的性質(zhì)和判定;一元二次方程;一元一次不等式組.19、(1)1.1;(2)見解析;(3).【解析】
(1)(2)需要認真按題目要求測量,描點作圖;(3)線段BD是線段CE長的2倍的條件可以轉(zhuǎn)化為一次函數(shù)圖象,通過數(shù)形結(jié)合解決問題.【詳解】根據(jù)題意測量約故應填:根據(jù)題意畫圖:當線段BD是線段CE長的2倍時,得到圖象,該圖象與中圖象的交點即為所求情況,測量得BD長約.故答案為(1)1.1;(2)見解析;(3)1.7.本題考查函數(shù)作圖和函數(shù)圖象實際意義的理解,在中,考查學生由數(shù)量關系得到函數(shù)關系的轉(zhuǎn)化思想.20、建筑物的高度為.建筑物的高度為.【解析】分析:過點D作DE⊥AB于于E,則DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解決問題.詳解:過點D作DE⊥AB于于E,則DE=BC=60m,在Rt△ABC中,tan53°==,∴AB=80(m).在Rt△ADE中,tan37°==,∴AE=45(m),∴BE=CD=AB﹣AE=35(m).答:兩座建筑物的高度分別為80m和35m.點睛:本題考查的是解直角三角形的應用﹣仰角俯角問題,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.21、每臺電腦0.5萬元;每臺電子白板1.5萬元.【解析】
先設每臺電腦x萬元,每臺電子白板y萬元,根據(jù)電子白板的價格是電腦的3倍,購買
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年居間合同義務明細書
- 2024年大數(shù)據(jù)分析與許可使用協(xié)議
- (2024版)云計算服務提供長期合同
- 2024年學校餐廳承包合同書
- 2024年學生借款協(xié)議文本
- 2024年城市規(guī)劃:新城區(qū)建設與發(fā)展合作協(xié)議
- 2024年工程監(jiān)理服務合同范本
- 2024年工程材料租借合同(一年期)
- 2024年居間服務合同:汽車銷售與租賃
- 2024年個體與公司間的軟件購買合同
- 初中體育課——立定跳遠教案
- (完整版)分析化學題庫精華版.doc
- 塔吊基礎下?lián)Q填地基設計
- 人民大學大眾汽車案例-4組
- 顧問咨詢服務合同
- 惠州市金山湖公園修建性詳細規(guī)劃
- 食品生產(chǎn)清洗消毒作業(yè)指導書
- 事故安全培訓案例(一)
- 考題六年級數(shù)學上冊看圖列方程計算專項北師大版
- 防火門新標準GB12955-2008(3)
- 培智學校的心理健康教育模式探索
評論
0/150
提交評論