版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西省博愛(ài)中學(xué)2025年初三中考全真模擬卷(四)數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.2.甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計(jì)圖如圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是()A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個(gè)裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到紅球的概率D.任意寫一個(gè)整數(shù),它能被2整除的概率3.下列圖形中,線段MN的長(zhǎng)度表示點(diǎn)M到直線l的距離的是()A. B. C. D.4.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點(diǎn)間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值25.點(diǎn)A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<46.某校數(shù)學(xué)興趣小組在一次數(shù)學(xué)課外活動(dòng)中,隨機(jī)抽查該校10名同學(xué)參加今年初中學(xué)業(yè)水平考試的體育成績(jī),得到結(jié)果如下表所示:下列說(shuō)法正確的是()A.這10名同學(xué)體育成績(jī)的中位數(shù)為38分B.這10名同學(xué)體育成績(jī)的平均數(shù)為38分C.這10名同學(xué)體育成績(jī)的眾數(shù)為39分D.這10名同學(xué)體育成績(jī)的方差為27.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t58.如圖,是半圓的直徑,點(diǎn)、是半圓的三等分點(diǎn),弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.9.計(jì)算-3-1的結(jié)果是()A.2B.-2C.4D.-410.如圖,將甲、乙、丙、丁四個(gè)小正方形中的一個(gè)剪掉,使余下的部分不能圍成一個(gè)正方體,剪掉的這個(gè)小正方形是A.甲 B.乙C.丙 D.丁11.下列圖形中,是正方體表面展開(kāi)圖的是()A. B. C. D.12.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖1是我國(guó)古代著名的“趙爽弦圖”的示意圖,它是由四個(gè)全等的直角三角形圍成.若較短的直角邊BC=5,將四個(gè)直角三角形中較長(zhǎng)的直角邊分別向外延長(zhǎng)一倍,得到圖2所示的“數(shù)學(xué)風(fēng)車”,若△BCD的周長(zhǎng)是30,則這個(gè)風(fēng)車的外圍周長(zhǎng)是_____.14.計(jì)算:sin30°﹣(﹣3)0=_____.15.若一個(gè)正多邊形的內(nèi)角和是其外角和的3倍,則這個(gè)多邊形的邊數(shù)是______.16.若關(guān)于x的不等式組恰有3個(gè)整數(shù)解,則字母a的取值范圍是_____.17.如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點(diǎn)A落在點(diǎn)A′的位置,若OB=,tan∠BOC=,則點(diǎn)A′的坐標(biāo)為_(kāi)____.18.使分式x2三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在Rt△ABC與Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于點(diǎn)G,過(guò)點(diǎn)A作AE∥DB交CB的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)B作BF∥CA交DA的延長(zhǎng)線于點(diǎn)F,AE,BF相交于點(diǎn)H.圖中有若干對(duì)三角形是全等的,請(qǐng)你任選一對(duì)進(jìn)行證明;(不添加任何輔助線)證明:四邊形AHBG是菱形;若使四邊形AHBG是正方形,還需在Rt△ABC的邊長(zhǎng)之間再添加一個(gè)什么條件?請(qǐng)你寫出這個(gè)條件.(不必證明)20.(6分)如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn).求此拋物線的解析式;求C、D兩點(diǎn)坐標(biāo)及△BCD的面積;若點(diǎn)P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點(diǎn)P的坐標(biāo).21.(6分)一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2)、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.從中任意摸出1個(gè)球,恰好摸到紅球的概率是;先從中任意摸出1個(gè)球,再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫樹(shù)狀圖或列表)求兩次都摸到紅球的概率.22.(8分)拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).23.(8分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點(diǎn)P為射線AD上任意一點(diǎn)(點(diǎn)P與點(diǎn)A不重合),連結(jié)CP,將線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,連結(jié)QB并延長(zhǎng)交直線AD于點(diǎn)E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當(dāng)∠DAC是銳角或鈍角時(shí),其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長(zhǎng).24.(10分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時(shí)間為x(h)(0≤x≤2)(1)根據(jù)題意,填寫下表:時(shí)間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時(shí),求x的值.25.(10分)為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問(wèn)題:(1)a=,b=,c=;(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為度;(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹(shù)狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.26.(12分)如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,B,M,N均在格點(diǎn)上,P為線段MN上的一個(gè)動(dòng)點(diǎn)(1)MN的長(zhǎng)等于_______,(2)當(dāng)點(diǎn)P在線段MN上運(yùn)動(dòng),且使PA2+PB2取得最小值時(shí),請(qǐng)借助網(wǎng)格和無(wú)刻度的直尺,在給定的網(wǎng)格中畫出點(diǎn)P的位置,并簡(jiǎn)要說(shuō)明你是怎么畫的,(不要求證明)27.(12分)把0,1,2三個(gè)數(shù)字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機(jī)抽取一張卡片,記錄下數(shù)字.放回后洗勻,再?gòu)闹谐槿∫粡埧ㄆ?,記錄下?shù)字.請(qǐng)用列表法或樹(shù)狀圖法求兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.本題考查了銳角三角函數(shù)的定義,熟記銳角三角函數(shù)的定義內(nèi)容是解題的關(guān)鍵.2、C【解析】解:A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率為,故此選項(xiàng)錯(cuò)誤;B.?dāng)S一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項(xiàng)錯(cuò)誤;C.從一裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項(xiàng)正確;D.任意寫出一個(gè)整數(shù),能被2整除的概率為,故此選項(xiàng)錯(cuò)誤.故選C.3、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長(zhǎng)度不能表示點(diǎn)M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點(diǎn)N,故線段MN的長(zhǎng)度能表示點(diǎn)M到直線l的距離.故選A.4、D【解析】設(shè)拋物線與x軸的兩交點(diǎn)間的橫坐標(biāo)分別為:x1,x2,
由韋達(dá)定理得:x1+x2=m-3,x1?x2=-m,則兩交點(diǎn)間的距離d=|x1-x2|==,∴m=1時(shí),dmin=2.故選D.5、B【解析】
根據(jù)第四象限內(nèi)點(diǎn)的橫坐標(biāo)是正數(shù),縱坐標(biāo)是負(fù)數(shù)列出不等式組,然后求解即可.【詳解】解:∵點(diǎn)A(m-1,1-2m)在第四象限,
∴解不等式①得,m>1,
解不等式②得,m>所以,不等式組的解集是m>1,
即m的取值范圍是m>1.
故選B.本題考查各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)特征以及解不等式,記住各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)是解決的關(guān)鍵,四個(gè)象限的符號(hào)特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、C【解析】試題分析:10名學(xué)生的體育成績(jī)中39分出現(xiàn)的次數(shù)最多,眾數(shù)為39;第5和第6名同學(xué)的成績(jī)的平均值為中位數(shù),中位數(shù)為:=39;平均數(shù)==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴選項(xiàng)A,B、D錯(cuò)誤;故選C.考點(diǎn):方差;加權(quán)平均數(shù);中位數(shù);眾數(shù).7、D【解析】選項(xiàng)A,根據(jù)同底數(shù)冪的乘法可得原式=t10;選項(xiàng)B,不是同類項(xiàng),不能合并;選項(xiàng)C,根據(jù)同底數(shù)冪的乘法可得原式=t7;選項(xiàng)D,根據(jù)同底數(shù)冪的乘法可得原式=t5,四個(gè)選項(xiàng)中只有選項(xiàng)D正確,故選D.8、D【解析】
連接OC、OD、BD,根據(jù)點(diǎn)C,D是半圓O的三等分點(diǎn),推導(dǎo)出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計(jì)算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點(diǎn)C、D是半圓O的三等分點(diǎn),∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.本題主要考查扇形面積的計(jì)算和幾何概率問(wèn)題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.9、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.10、D【解析】解:將如圖所示的圖形剪去一個(gè)小正方形,使余下的部分不能圍成一個(gè)正方體,編號(hào)為甲乙丙丁的小正方形中剪去的是?。蔬xD.11、C【解析】
利用正方體及其表面展開(kāi)圖的特點(diǎn)解題.【詳解】解:A、B、D經(jīng)過(guò)折疊后,下邊沒(méi)有面,所以不可以圍成正方體,C能折成正方體.故選C.本題考查了正方體的展開(kāi)圖,解題時(shí)牢記正方體無(wú)蓋展開(kāi)圖的各種情形.12、C【解析】
主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項(xiàng)錯(cuò)誤;B.主視圖為三角形,左視圖為三角形,故選項(xiàng)錯(cuò)誤;C.主視圖為矩形,左視圖為矩形,故選項(xiàng)正確;D.主視圖為矩形,左視圖為圓形,故選項(xiàng)錯(cuò)誤.故答案選:C.本題考查的知識(shí)點(diǎn)是截一個(gè)幾何體,解題的關(guān)鍵是熟練的掌握截一個(gè)幾何體.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、71【解析】分析:由題意∠ACB為直角,利用勾股定理求得外圍中一條邊,又由AC延伸一倍,從而求得風(fēng)車的一個(gè)輪子,進(jìn)一步求得四個(gè).詳解:依題意,設(shè)“數(shù)學(xué)風(fēng)車”中的四個(gè)直角三角形的斜邊長(zhǎng)為x,AC=y,則x2=4y2+52,∵△BCD的周長(zhǎng)是30,∴x+2y+5=30則x=13,y=1.∴這個(gè)風(fēng)車的外圍周長(zhǎng)是:4(x+y)=4×19=71.故答案是:71.點(diǎn)睛:本題考查了勾股定理在實(shí)際情況中的應(yīng)用,注意隱含的已知條件來(lái)解答此類題.14、-【解析】
sin30°=,a0=1(a≠0)【詳解】解:原式=-1=-故答案為:-.本題考查了30°的角的正弦值和非零數(shù)的零次冪.熟記是關(guān)鍵.15、8【解析】
解:設(shè)邊數(shù)為n,由題意得,180(n-2)=3603解得n=8.所以這個(gè)多邊形的邊數(shù)是8.16、﹣2≤a<﹣1.【解析】
先確定不等式組的整數(shù)解,再求出a的范圍即可.【詳解】∵關(guān)于x的不等式組恰有3個(gè)整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.本題考查了一元一次不等式組的整數(shù)解的應(yīng)用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關(guān)鍵.17、【解析】
如圖,作輔助線;根據(jù)題意首先求出AB、BC的長(zhǎng)度;借助面積公式求出A′D、OD的長(zhǎng)度,即可解決問(wèn)題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過(guò)點(diǎn)A′作A′D⊥x軸與點(diǎn)D;設(shè)A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設(shè)AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)該題以平面直角坐標(biāo)系為載體,以翻折變換為方法構(gòu)造而成;綜合考查了矩形的性質(zhì)、三角函數(shù)的定義、勾股定理等幾何知識(shí)點(diǎn);對(duì)分析問(wèn)題解決問(wèn)題的能力提出了較高的要求.18、1【解析】試題分析:根據(jù)題意可知這是分式方程,x2答案為1.考點(diǎn):分式方程的解法三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)需要添加的條件是AB=BC.【解析】試題分析:(1)可根據(jù)已知條件,或者圖形的對(duì)稱性合理選擇全等三角形,如△ABC≌△BAD,利用SAS可證明.(2)由已知可得四邊形AHBG是平行四邊形,由(1)可知∠ABD=∠BAC,得到△GAB為等腰三角形,?AHBG的兩鄰邊相等,從而得到平行四邊形AHBG是菱形.試題解析:(1)解:△ABC≌△BAD.證明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)證明:∵AH∥GB,BH∥GA,∴四邊形AHBG是平行四邊形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四邊形AHBG是菱形.(3)需要添加的條件是AB=BC.點(diǎn)睛:本題考查全等三角形,四邊形等幾何知識(shí),考查幾何論證和思維能力,第(3)小題是開(kāi)放題,答案不唯一.20、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】
(1)設(shè)拋物線頂點(diǎn)式解析式y(tǒng)=a(x-1)2+4,然后把點(diǎn)B的坐標(biāo)代入求出a的值,即可得解;
(2)令y=0,解方程得出點(diǎn)C,D坐標(biāo),再用三角形面積公式即可得出結(jié)論;
(3)先根據(jù)面積關(guān)系求出點(diǎn)P的坐標(biāo),求出點(diǎn)P的縱坐標(biāo),代入拋物線解析式即可求出點(diǎn)P的坐標(biāo).【詳解】解:(1)、∵拋物線的頂點(diǎn)為A(1,4),∴設(shè)拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點(diǎn)B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點(diǎn)P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).本題考查的是二次函數(shù)的綜合應(yīng)用,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.21、(1)(2)【解析】試題分析:(1)因?yàn)榭偣灿?個(gè)球,紅球有2個(gè),因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結(jié)果:第二次
第一次
紅球1
紅球2
白球
黑球
紅球1
(紅球1,紅球2)
(紅球1,白球)
(紅球1,黑球)
紅球2
(紅球2,紅球1)
(紅球2,白球)
(紅球2,黑球)
白球
(白球,紅球1)
(白球,紅球2)
(白球,黑球)
黑球
(黑球,紅球1)
(黑球,紅球2)
(黑球,白球)
由表格可知,共有12種可能出現(xiàn)的結(jié)果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點(diǎn):概率統(tǒng)計(jì)22、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解析】試題分析:把點(diǎn)的坐標(biāo)代入即可求得拋物線的解析式.作BH⊥AC于點(diǎn)H,求出的長(zhǎng)度,即可求出∠ACB的度數(shù).延長(zhǎng)CD交x軸于點(diǎn)G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直線的方程,和拋物線的方程聯(lián)立即可求得點(diǎn)的坐標(biāo).試題解析:(1)由題意,得解得.∴這條拋物線的表達(dá)式為.(2)作BH⊥AC于點(diǎn)H,∵A點(diǎn)坐標(biāo)是(-1,0),C點(diǎn)坐標(biāo)是(0,3),B點(diǎn)坐標(biāo)是(,0),∴AC=,AB=,OC=3,BC=.∵,即∠BAD=,∴.Rt△BCH中,,BC=,∠BHC=90o,∴.又∵∠ACB是銳角,∴.(3)延長(zhǎng)CD交x軸于點(diǎn)G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG=CG.∴.∴AG=1.∴G點(diǎn)坐標(biāo)是(4,0).∵點(diǎn)C坐標(biāo)是(0,3),∴.∴解得,(舍).∴點(diǎn)D坐標(biāo)是23、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見(jiàn)解析;(3)【解析】
(1)如圖1,先根據(jù)旋轉(zhuǎn)的性質(zhì)和等邊三角形的性質(zhì)得出∠PCA=∠QCB,進(jìn)而可利用SAS證明△CQB≌△CPA,進(jìn)而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內(nèi)角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進(jìn)一步即可證得結(jié)論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長(zhǎng)即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長(zhǎng),于是AP可得,問(wèn)題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因?yàn)椤鱌EM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;
(3)連結(jié)CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.本題考查了等邊三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和有關(guān)計(jì)算、30°角的直角三角形的性質(zhì)等知識(shí),涉及的知識(shí)點(diǎn)多、綜合性強(qiáng),靈活應(yīng)用全等三角形的判定和性質(zhì)、熟練掌握旋轉(zhuǎn)的性質(zhì)和相關(guān)圖形的性質(zhì)是解題的關(guān)鍵.24、(1)18,2,20(2)(3)當(dāng)y=12時(shí),x的值是1.2或1.6【解析】
(Ⅰ)根據(jù)路程、時(shí)間、速度三者間的關(guān)系通過(guò)計(jì)算即可求得相應(yīng)答案;(Ⅱ)根據(jù)路程=速度×?xí)r間結(jié)合甲、乙的速度以及時(shí)間范圍即可求得答案;(Ⅲ)根據(jù)題意,得,然后分別將y=12代入即可求得答案.【詳解】(Ⅰ)由題意知:甲、乙二人平均速度分別是平均速度為10km/h和40km/h,且比甲晚1.5h出
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合模機(jī)項(xiàng)目安全風(fēng)險(xiǎn)評(píng)價(jià)報(bào)告
- 無(wú)源液封水表行業(yè)行業(yè)發(fā)展趨勢(shì)及投資戰(zhàn)略研究分析報(bào)告
- 大學(xué)護(hù)理畢業(yè)生自我鑒定5篇
- 關(guān)于幼師自我鑒定模板錦集9篇
- 私人借款協(xié)議書
- 綜合執(zhí)法網(wǎng)絡(luò)課程設(shè)計(jì)
- 測(cè)量專業(yè)實(shí)習(xí)報(bào)告范文七篇
- 艱苦的軍訓(xùn)心得體會(huì)600字
- 旅游管理實(shí)習(xí)心得體會(huì)8篇
- 文員類實(shí)習(xí)報(bào)告模板集合六篇
- 公共衛(wèi)生事業(yè)管理專業(yè)職業(yè)生涯規(guī)劃書
- GB/T 43232-2023緊固件軸向應(yīng)力超聲測(cè)量方法
- 花藝師年度工作總結(jié)
- 新目標(biāo)漢語(yǔ)口語(yǔ)課本2課件-第2單元
- 二手車買賣合同(標(biāo)準(zhǔn)版范本)
- 新產(chǎn)品的試制與導(dǎo)入
- 聚酰胺酰亞胺實(shí)驗(yàn)報(bào)告
- 污水處理廠污泥處理處置投標(biāo)方案
- 智能包裝設(shè)計(jì)智慧樹(shù)知到課后章節(jié)答案2023年下湖南工業(yè)大學(xué)
- 抖音快手短視頻創(chuàng)業(yè)項(xiàng)目融資商業(yè)計(jì)劃書模板(完整版)
- 上海市交大二附中2024屆數(shù)學(xué)七年級(jí)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
評(píng)論
0/150
提交評(píng)論