浙江省溫州市瑞安市重點達標名校2025年初三3月第二次階段考數(shù)學(xué)試題含解析_第1頁
浙江省溫州市瑞安市重點達標名校2025年初三3月第二次階段考數(shù)學(xué)試題含解析_第2頁
浙江省溫州市瑞安市重點達標名校2025年初三3月第二次階段考數(shù)學(xué)試題含解析_第3頁
浙江省溫州市瑞安市重點達標名校2025年初三3月第二次階段考數(shù)學(xué)試題含解析_第4頁
浙江省溫州市瑞安市重點達標名校2025年初三3月第二次階段考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省溫州市瑞安市重點達標名校2025年初三3月第二次階段考數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.842.下列計算正確的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a23.的相反數(shù)是()A. B.2 C. D.4.菱形ABCD中,對角線AC、BD相交于點O,H為AD邊中點,菱形ABCD的周長為28,則OH的長等于()A.3.5 B.4 C.7 D.145.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°6.二次函數(shù)y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)7.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°8.的負倒數(shù)是()A. B.- C.3 D.﹣39.如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,且AB=10,BC=15,MN=3,則AC的長是()A.12 B.14 C.16 D.1810.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,扇形OAB的圓心角為30°,半徑為1,將它沿箭頭方向無滑動滾動到O′A′B′的位置時,則點O到點O′所經(jīng)過的路徑長為_____.12.如圖,在△ABC中,D,E分別是AB,AC邊上的點,DE∥BC.若AD=6,BD=2,DE=3,則BC=______.13.已知關(guān)于x的一元二次方程有兩個相等的實數(shù)根,則a的值是______.14.袋中裝有紅、綠各一個小球,隨機摸出1個小球后放回,再隨機摸出一個,則第一次摸到紅球,第二次摸到綠球的概率是_____.15.如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計算AE的長度等于_____.16.如圖,四邊形ABCD是菱形,∠DAB=50°,對角線AC,BD相交于點O,DH⊥AB于H,連接OH,則∠DHO=_____度.三、解答題(共8題,共72分)17.(8分)如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設(shè)點P的橫坐標為t,線段PE長為d,寫出d與t的關(guān)系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當∠BQE+∠DEQ=90°時,求此時點P的坐標.18.(8分)某學(xué)校為弘揚中國傳統(tǒng)詩詞文化,在九年級隨機抽查了若干名學(xué)生進行測試,然后把測試結(jié)果分為4個等級;A、B、C、D,對應(yīng)的成績分別是9分、8分、7分、6分,并將統(tǒng)計結(jié)果繪制成兩幅如圖所示的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:(1)本次抽查測試的學(xué)生人數(shù)為,圖①中的a的值為;(2)求統(tǒng)計所抽查測試學(xué)生成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).19.(8分)解方程:-=120.(8分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號).21.(8分)重百江津商場銷售AB兩種商品,售出1件A種商品和4件B種商品所得利潤為600元,售出3件A商品和5件B種商品所得利潤為1100元.求每件A種商品和每件B種商品售出后所得利潤分別為多少元?由于需求量大A、B兩種商品很快售完,重百商場決定再次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么重百商場至少購進多少件A種商品?22.(10分)某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖,回答下列問題:(1)這次調(diào)查中,一共調(diào)查了多少名學(xué)生?(2)求出扇形統(tǒng)計圖中“B:跳繩”所對扇形的圓心角的度數(shù),并補全條形圖;(3)若該校有2000名學(xué)生,請估計選擇“A:跑步”的學(xué)生約有多少人?23.(12分)如圖,經(jīng)過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關(guān)于直線x=2對稱,求拋物線的函數(shù)表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.24.請根據(jù)圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數(shù))個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.2、B【解析】

利用完全平方公式及平方差公式計算即可.【詳解】解:A、原式=a2-6a+9,本選項錯誤;

B、原式=a2-9,本選項正確;

C、原式=a2-2ab+b2,本選項錯誤;

D、原式=a2+2ab+b2,本選項錯誤,

故選:B.本題考查了平方差公式和完全平方公式,熟練掌握公式是解題的關(guān)鍵.3、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.4、A【解析】

根據(jù)菱形的四條邊都相等求出AB,菱形的對角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點,∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.本題考查了菱形的對角線互相平分的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.5、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點睛:本題考查了三角形、四邊形內(nèi)角和定理,掌握n邊形內(nèi)角和為(n﹣2)×180°(n≥3且n為整數(shù))是解題的關(guān)鍵.6、B【解析】

由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).7、C【解析】

首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大小.【詳解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折疊的性質(zhì)知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.此題考查了長方形的性質(zhì)與折疊的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.8、D【解析】

根據(jù)倒數(shù)的定義,互為倒數(shù)的兩數(shù)乘積為1,2×=1.再求出2的相反數(shù)即可解答.【詳解】根據(jù)倒數(shù)的定義得:2×=1.

因此的負倒數(shù)是-2.

故選D.本題考查了倒數(shù),解題的關(guān)鍵是掌握倒數(shù)的概念.9、C【解析】延長線段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN與△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的邊BC的中點,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故選C.10、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

點O到點O′所經(jīng)過的路徑長分三段,先以A為圓心,1為半徑,圓心角為90度的弧長,再平移了AB弧的長,最后以B為圓心,1為半徑,圓心角為90度的弧長.根據(jù)弧長公式計算即可.【詳解】解:∵扇形OAB的圓心角為30°,半徑為1,∴AB弧長=∴點O到點O′所經(jīng)過的路徑長=故答案為:本題考查了弧長公式:.也考查了旋轉(zhuǎn)的性質(zhì)和圓的性質(zhì).12、1【解析】

根據(jù)已知DE∥BC得出=進而得出BC的值【詳解】∵DE∥BC,AD=6,BD=2,DE=3,∴△ADE∽△ABC,∴,∴,∴BC=1,故答案為1.此題考查了平行線分線段成比例的性質(zhì),解題的關(guān)鍵在于利用三角形的相似求三角形的邊長.13、.【解析】試題分析:∵關(guān)于x的一元二次方程有兩個相等的實數(shù)根,∴.考點:一元二次方程根的判別式.14、【解析】解:列表如下:所有等可能的情況有4種,所以第一次摸到紅球,第二次摸到綠球的概率=.故答案為.15、2【解析】

根據(jù)題意、解直角三角形、菱形的性質(zhì)、翻折變化可以求得AE的長.【詳解】由題意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等邊三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四邊形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案為2.本題考查翻折變化、平行線的性質(zhì)、直角三角形斜邊上的中線,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.16、1.【解析】試題分析:∵四邊形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=×50°=1°.考點:菱形的性質(zhì).三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】

(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標,又OA=OC,可求得點C的坐標,然后分別代入B,C的坐標求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長PE交x軸于點H,現(xiàn)將解析式換為頂點解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的相關(guān)知識點.18、(1)50、2;(2)平均數(shù)是7.11;眾數(shù)是1;中位數(shù)是1.【解析】

(1)根據(jù)A等級人數(shù)及其百分比可得總?cè)藬?shù),用C等級人數(shù)除以總?cè)藬?shù)可得a的值;(2)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的定義計算可得.【詳解】(1)本次抽查測試的學(xué)生人數(shù)為14÷21%=50人,a%=×100%=2%,即a=2.故答案為50、2;(2)觀察條形統(tǒng)計圖,平均數(shù)為=7.11.∵在這組數(shù)據(jù)中,1出現(xiàn)了20次,出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是1.∵將這組數(shù)據(jù)從小到大的順序排列,其中處于中間的兩個數(shù)都是1,∴=1,∴這組數(shù)據(jù)的中位數(shù)是1.本題考查了眾數(shù)、平均數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).19、【解析】【分析】先去分母,把分式方程化為一元一次方程,解一元一次方程,再驗根.【詳解】解:去分母得:解得:檢驗:把代入所以:方程的解為【點睛】本題考核知識點:解方式方程.解題關(guān)鍵點:去分母,得到一元一次方程,.驗根是要點.20、(1)詳見解析;(2);【解析】

(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內(nèi)角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,得到OC⊥CE,于是得到結(jié)論;

(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】:(1)連接OC,

∵OF⊥AB,

∴∠AOF=90°,

∴∠A+∠AFO+90°=180°,

∵∠ACE+∠AFO=180°,

∴∠ACE=90°+∠A,

∵OA=OC,

∴∠A=∠ACO,

∴∠ACE=90°+∠ACO=∠ACO+∠OCE,

∴∠OCE=90°,

∴OC⊥CE,

∴EM是⊙O的切線;

(2)∵AB是⊙O的直徑,

∴∠ACB=90°,

∴∠ACO+∠BCO=∠BCE+∠BCO=90°,

∴∠ACO=∠BCE,

∵∠A=∠E,

∴∠A=∠ACO=∠BCE=∠E,

∴∠ABC=∠BCO+∠E=2∠A,

∴∠A=30°,

∴∠BOC=60°,

∴△BOC是等邊三角形,

∴OB=BC=,

∴陰影部分的面積=,本題考查了切線的判定,等腰三角形的判定和性質(zhì),扇形的面積計算,連接OC是解題的關(guān)鍵.21、(1)200元和100元(2)至少6件【解析】

(1)設(shè)A種商品售出后所得利潤為x元,B種商品售出后所得利潤為y元.由售出1件A種商品和4件B種商品所得利潤為600元,售出3件A種商品和5件B種商品所得利潤為1100元建立兩個方程,構(gòu)成方程組求出其解就可以;(2)設(shè)購進A種商品a件,則購進B種商品(34﹣a)件.根據(jù)獲得的利潤不低于4000元,建立不等式求出其解即可.【詳解】解:(1)設(shè)A種商品售出后所得利潤為x元,B種商品售出后所得利潤為y元.由題意,得,解得:,答:A種商品售出后所得利潤為200元,B種商品售出后所得利潤為100元.(2)設(shè)購進A種商品a件,則購進B種商品(34﹣a)件.由題意,得200a+100(34﹣a)≥4000,解得:a≥6答:威麗商場至少需購進6件A種商品.22、(1)一共調(diào)查了300名學(xué)生;(2)36°,補圖見解析;(3)估計選擇“A:跑步”的學(xué)生約有800人.【解析】

(1)由跑步的學(xué)生數(shù)除以占的百分比求出調(diào)查學(xué)生總數(shù)即可;(2)求出跳繩學(xué)生占的百分比,乘以360°求出占的圓心角度數(shù),補全條形統(tǒng)計圖即可;(3)利用跑步占的百分比,乘以2000即可得到結(jié)果.【詳解】(1)根據(jù)題意得:120÷40%=300(名),則一共調(diào)查了300名學(xué)生;(2)根據(jù)題意得:跳繩學(xué)生數(shù)為300﹣(120+60+90)=30(名),則扇形統(tǒng)計圖中“B:跳繩”所對扇形的圓心角的度數(shù)為360°×=36°,;(3)根據(jù)題意得:2000×40%=800(人),則估計選擇“A:跑步”的學(xué)生約有800人.此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題中的數(shù)據(jù)是解本題的關(guān)鍵.23、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】

(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據(jù)拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設(shè)存在點E使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設(shè)在拋物線上還存在點E′,使得以A,C,F(xiàn)′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論