2024年中國端側(cè)大模型行業(yè)研究:算力優(yōu)化與效率革命+如何重塑行業(yè)生態(tài)-22正式版_第1頁
2024年中國端側(cè)大模型行業(yè)研究:算力優(yōu)化與效率革命+如何重塑行業(yè)生態(tài)-22正式版_第2頁
2024年中國端側(cè)大模型行業(yè)研究:算力優(yōu)化與效率革命+如何重塑行業(yè)生態(tài)-22正式版_第3頁
2024年中國端側(cè)大模型行業(yè)研究:算力優(yōu)化與效率革命+如何重塑行業(yè)生態(tài)-22正式版_第4頁
2024年中國端側(cè)大模型行業(yè)研究:算力優(yōu)化與效率革命+如何重塑行業(yè)生態(tài)-22正式版_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024年中國端側(cè)大模型行業(yè)研究算力優(yōu)化與效率革命如何重塑行業(yè)生態(tài)企業(yè)標(biāo)簽:阿里云、商湯科技、面壁智能AI變革行業(yè)創(chuàng)新發(fā)展ChinaEndToSideLargeModelIndustry中國エンド側(cè)大型モデル産業(yè)撰寫人:王利華報(bào)告提供的任何內(nèi)容(包括但不限于數(shù)據(jù)、文字、圖表、圖像等)均系頭豹研究院獨(dú)有的高度機(jī)密性文件(在報(bào)告中另行標(biāo)明出處者除外)。未經(jīng)頭豹研究院事先書面許可,任何人不得以任何方式擅自復(fù)制、再造、傳播、出版、引用、改編、匯編本報(bào)告內(nèi)容,若有違反上述約定的行為發(fā)生,頭豹研究院保留采取法律措施、追究相關(guān)人員責(zé)任的權(quán)利。頭豹研究院開展的所有商業(yè)活動(dòng)均使用“頭豹研究院”或“頭豹”的商號(hào)、商標(biāo),頭豹研究院無任何前述名稱之外的其他分支機(jī)構(gòu),也未授權(quán)或聘用其他任何第三方代表頭豹研究院開展商業(yè)活動(dòng)。頭豹研究院團(tuán)隊(duì)介紹頭豹是國內(nèi)領(lǐng)先的行企研究原創(chuàng)內(nèi)容平臺(tái)和創(chuàng)新的數(shù)字化研究服務(wù)提供商。頭豹在中國已布局3大研究院,擁有近百名資深分析師,頭豹科創(chuàng)網(wǎng)()擁有20萬+注冊(cè)用戶,6,000+行業(yè)賽道覆蓋及相關(guān)研究報(bào)告產(chǎn)出。頭豹打造了一系列產(chǎn)品及解決方案,包括數(shù)據(jù)庫服務(wù)、行企研報(bào)服務(wù)、微估值及微盡調(diào)自動(dòng)化產(chǎn)品、財(cái)務(wù)顧問服務(wù)、PR及IR服務(wù),研究課程,以及分析師培訓(xùn)等。誠摯歡迎各界精英與頭豹交流合作,請(qǐng)即通過郵件或來電咨詢。報(bào)告作者袁栩聰首席分析師oliver.yuan@L王利華行業(yè)分析師lihua.wang@頭豹研究院咨詢/合作網(wǎng)址:電話袁先生)電話李先生)深圳市華潤置地大廈E座4105室行業(yè)研讀

|2024/5中國:人工智能系列摘要?2023年中國端側(cè)大模型市場規(guī)模達(dá)8億元,持樂觀態(tài)度估計(jì),預(yù)計(jì)2024年中國端側(cè)大模型市場將達(dá)到21億元端側(cè)大模型定義為運(yùn)行在設(shè)備端的大規(guī)模人工智能模型,這些模型通常部署在本地設(shè)備上,如智能手機(jī)、IoT、PC、機(jī)器人等設(shè)備。與傳統(tǒng)的云端大模型相比,端側(cè)大模型的參數(shù)量更小,因此可以在設(shè)備端直接使用算力進(jìn)行運(yùn)行,無需依賴云端算力。生成式AI市場的蓬勃興起,正驅(qū)使大模型廠商積極探索端側(cè)應(yīng)用新藍(lán)海,以此作為增長的新引擎。端側(cè)大模型通過在設(shè)備本地運(yùn)行,有效降低了數(shù)據(jù)傳輸延遲,增強(qiáng)了隱私保護(hù),拓寬了AI應(yīng)用場景的廣度與深度。端側(cè)大模型在成本、能耗、可靠性、隱私和個(gè)性化方面相比云端推理具有顯著優(yōu)勢,并能夠以低能耗提供高效且安全的AI處理,減少延遲與此同時(shí),下游市場需求的強(qiáng)勁增長,特別是手機(jī)與自動(dòng)駕駛行業(yè)的蓬勃發(fā)展,正強(qiáng)力拉動(dòng)端側(cè)大模型市場的擴(kuò)張,2023年中國端側(cè)大模型市場規(guī)模達(dá)8億元,預(yù)計(jì)2024年中國端側(cè)大模型市場將達(dá)到21億元。并保護(hù)用戶隱私,適合個(gè)性化的AI應(yīng)用。取決于行業(yè)對(duì)數(shù)據(jù)安全、隱私保護(hù)的需求、行業(yè)本身智能設(shè)備的普及程度以及AI大模型技術(shù)的成熟度,這些因素的相互作用和共同推動(dòng),端側(cè)大模型將推動(dòng)各行業(yè)智能化發(fā)展的步伐。依托技術(shù)實(shí)力和生態(tài)建設(shè),頭部大模型廠商紛紛投入端側(cè)大模型市場,利用在云端大模型領(lǐng)域的技術(shù)優(yōu)勢,商湯商量、阿里通義以及面壁智能率先在端側(cè)大模型領(lǐng)域取得領(lǐng)先突破。端側(cè)大模型面臨的行業(yè)壁壘包括技術(shù)、硬件、數(shù)據(jù)、成本以及市場等方面,要求產(chǎn)業(yè)界在技術(shù)創(chuàng)新、標(biāo)準(zhǔn)制定、生態(tài)建設(shè)和市場推廣等方面進(jìn)行深入合作,以克服挑戰(zhàn),實(shí)現(xiàn)端側(cè)大模型的廣泛應(yīng)用和落地。400-072-55883研究框架◆

中國端側(cè)大模型行業(yè)概述--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------6????定義與分類發(fā)展歷程驅(qū)動(dòng)力789市場規(guī)模10111213141516171920212223242526272829◆

中國端側(cè)大模型行業(yè)產(chǎn)業(yè)鏈分析??????產(chǎn)業(yè)鏈模型壓縮技術(shù)成本構(gòu)成廠商類型行業(yè)場景業(yè)務(wù)場景◆

中國端側(cè)大模型行業(yè)分析????政策分析行業(yè)壁壘競爭格局發(fā)展趨勢◆

中國端側(cè)大模型行業(yè)典型廠商分析???阿里云商湯科技面壁智能◆

方法論及法律聲明◆

業(yè)務(wù)合作400-072-55884名詞解釋◆◆◆◆AI大模型:指的是大型人工智能模型,通常由數(shù)十億至數(shù)百億個(gè)參數(shù)組成,用于各種自然語言處理、計(jì)算機(jī)視覺等任務(wù)。模型壓縮技術(shù):是一系列用于減少大型神經(jīng)網(wǎng)絡(luò)模型尺寸和計(jì)算復(fù)雜度的技術(shù),包括剪枝、量化、蒸餾等方法,旨在減少模型大小的同時(shí)保持其性能。IoT設(shè)備:指的是物聯(lián)網(wǎng)設(shè)備,通常具有較小的計(jì)算能力和存儲(chǔ)空間,但能夠通過互聯(lián)網(wǎng)進(jìn)行通信和數(shù)據(jù)交換。PC設(shè)備:個(gè)人計(jì)算機(jī),如臺(tái)式機(jī)、筆記本電腦等,通常具有較高的計(jì)算和存儲(chǔ)能力,適合運(yùn)行復(fù)雜的應(yīng)用程序和任務(wù)?!簟簟魯?shù)據(jù)中心:指的是大規(guī)模的服務(wù)器集群,用于存儲(chǔ)和處理大量數(shù)據(jù),支持云計(jì)算服務(wù)和網(wǎng)絡(luò)應(yīng)用。服務(wù)器:通常指的是提供網(wǎng)絡(luò)服務(wù)、存儲(chǔ)和計(jì)算資源的計(jì)算機(jī)系統(tǒng),可用于托管網(wǎng)站、應(yīng)用程序等。BERT:是一種預(yù)訓(xùn)練的自然語言處理模型,采用Transformer架構(gòu),能夠理解文本語境并在各種NLP任務(wù)中取得良好性能?!簟鬌istilBERT:是對(duì)BERT模型進(jìn)行了蒸餾(Distillation)的輕量化版本,通過減少參數(shù)和計(jì)算復(fù)雜度來提高模型的運(yùn)行效率。TinyBERT:是進(jìn)一步輕量化的BERT模型,通過更深入的模型壓縮和優(yōu)化來適應(yīng)資源受限的環(huán)境,如移動(dòng)設(shè)備或物聯(lián)網(wǎng)設(shè)備?!簟簟簟簟鬔etsonAGXXavier:高性能嵌入式系統(tǒng),具有GPU和AI計(jì)算能力,適用于邊緣計(jì)算和深度學(xué)習(xí)應(yīng)用。TPU:谷歌推出的張量處理單元,是一種專門用于加速人工智能工作負(fù)載的定制硬件加速器。PyTorchMobile:是PyTorch框架的移動(dòng)端部署版本,支持在移動(dòng)設(shè)備上運(yùn)行訓(xùn)練好的深度學(xué)習(xí)模型。TensorFlowLite:是谷歌推出的用于在移動(dòng)設(shè)備和嵌入式系統(tǒng)上部署深度學(xué)習(xí)模型的輕量級(jí)框架。ONNX:開放神經(jīng)網(wǎng)絡(luò)交換,是一種開放的跨平臺(tái)深度學(xué)習(xí)模型表示格式,支持模型在不同框架之間的轉(zhuǎn)換和部署?!纛A(yù)訓(xùn)練模型:指的是在大規(guī)模文本數(shù)據(jù)上進(jìn)行預(yù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)模型,通常包含通用的語言或視覺理解能力,并可通過微調(diào)適應(yīng)特定任務(wù)?!簟糁行脑疲褐傅氖莻鹘y(tǒng)的云計(jì)算架構(gòu),數(shù)據(jù)和計(jì)算資源集中在大型數(shù)據(jù)中心進(jìn)行管理和運(yùn)行。邊緣云:是一種分布式的云計(jì)算架構(gòu),將計(jì)算和存儲(chǔ)資源放置在接近終端用戶的邊緣節(jié)點(diǎn)上,以提高服務(wù)響應(yīng)速度和降低網(wǎng)絡(luò)延遲?!簟鬉I芯片:專門用于加速人工智能計(jì)算任務(wù)的硬件芯片,能夠在高效率和低能耗的條件下進(jìn)行大規(guī)模并行計(jì)算。知識(shí)蒸餾:是一種通過讓一個(gè)較大且性能較好的模型(教師模型)指導(dǎo)一個(gè)小型模型(學(xué)生模型)來提高學(xué)生模型性能的技術(shù),通常用于模型壓縮和輕量化。400-072-55885行業(yè)研讀

|2024/5Chapter1行業(yè)概述?

定義與分類?

發(fā)展歷程?

驅(qū)動(dòng)力?

市場規(guī)模400-072-5588行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——定義與分類?端側(cè)大模型定義為運(yùn)行在設(shè)備端的大規(guī)模人工智能模型,與傳統(tǒng)的云端大模型相比,端側(cè)大模型的參數(shù)量更小,因此可以在設(shè)備端直接使用算力進(jìn)行運(yùn)行,無需依賴云端算力端側(cè)大模型的定義網(wǎng)絡(luò)安全計(jì)算

存儲(chǔ)AI大模型模型壓縮技術(shù)端側(cè)大模型用戶移動(dòng)設(shè)備IoT設(shè)備PC設(shè)備機(jī)器人?端側(cè)大模型定義為運(yùn)行在設(shè)備端的大規(guī)模人工智能模型,這些模型通常部署在本地設(shè)備上,如智能手機(jī)、IoT、PC、機(jī)器人等設(shè)備。與傳統(tǒng)的云端大模型相比,端側(cè)大模型的參數(shù)量更小,因此可以在設(shè)備端直接使用算力進(jìn)行運(yùn)行,無需依賴云端算力。AI大模型端側(cè)大模型模型訓(xùn)練方式:數(shù)據(jù)中心或云端模型推理方式:服務(wù)器或云端參數(shù)量:多為百億級(jí)別模型訓(xùn)練方式:云端模型推理方式:端側(cè)VS參數(shù)量:多為十億級(jí)別?AI大模型通常在數(shù)據(jù)中心或云端進(jìn)行訓(xùn)練,使用大規(guī)模的計(jì)算資源和海量數(shù)據(jù)。相比之下,端側(cè)大模型由于資源限制,往往需要在設(shè)計(jì)和訓(xùn)練階段進(jìn)行模型壓縮和優(yōu)化。在推理方式上,AI大模型通常運(yùn)行在服務(wù)器或云端,通過強(qiáng)大的計(jì)算能力處理復(fù)雜的任務(wù)。然而,這種云端推理方式依賴于網(wǎng)絡(luò)連接,會(huì)帶來延遲和隱私問題。端側(cè)大模型則是在本地設(shè)備上進(jìn)行推理。?參數(shù)量是AI大模型和端側(cè)大模型的一個(gè)顯著區(qū)別。AI大模型通常具有數(shù)十億甚至上百億的參數(shù),如GPT-3的1,750億參數(shù)。這種巨大的參數(shù)量使得大模型能夠捕捉復(fù)雜的數(shù)據(jù)模式并在多種任務(wù)中表現(xiàn)出色。然而,端側(cè)設(shè)備的計(jì)算能力和存儲(chǔ)資源有限,因此端側(cè)大模型的參數(shù)量通常較小。通過模型壓縮技術(shù),如知識(shí)蒸餾、剪枝和量化,端側(cè)大模型的參數(shù)量可以減少到幾百萬或更少。例如,MobileBERT的參數(shù)量僅為BERT的1/4左右,但依然能夠在移動(dòng)設(shè)備上高效運(yùn)行。來源:企業(yè)官網(wǎng),頭豹研究院400-072-55887行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——驅(qū)動(dòng)力?端側(cè)大模型在成本、能耗、可靠性、隱私和個(gè)性化方面相比云端推理具有顯著優(yōu)勢,并能夠以低能耗提供高效且安全的AI處理,減少延遲并保護(hù)用戶隱私,適合個(gè)性化的AI應(yīng)用端側(cè)大模型市場驅(qū)動(dòng)力分析5G中心云邊緣云端側(cè)為實(shí)現(xiàn)規(guī)?;瘮U(kuò)展,AI處理的重心,正在向邊緣轉(zhuǎn)移可靠性、性能和時(shí)延03能耗隱私和安全0204端側(cè)大模型成本優(yōu)勢個(gè)性化0105?從成本優(yōu)勢來看,AI推理的規(guī)模遠(yuǎn)高于AI訓(xùn)練。盡管訓(xùn)練單個(gè)模型會(huì)消耗大量資源,但大型生成式AI模型預(yù)計(jì)每年僅需訓(xùn)練幾次。然而,這些模型的推理成本將隨著日活用戶數(shù)量及其使用頻率的增加而增加。在云端進(jìn)行推理的成本極高,這將導(dǎo)致規(guī)模化擴(kuò)展難以持續(xù)。??從能耗來看,支持高效AI處理的邊緣終端能夠提供領(lǐng)先的能效,尤其是與云端相比。邊緣終端能夠以很低的能耗運(yùn)行生成式AI模型,尤其是將處理和數(shù)據(jù)傳輸相結(jié)合時(shí)。這一能耗成本差異非常明顯。從可靠性、性能和時(shí)延來看,終端側(cè)AI處理能夠在云服務(wù)器和網(wǎng)絡(luò)連接擁堵時(shí),提供媲美云端甚至更佳的性能

。當(dāng)生成式AI查詢對(duì)于云的需求達(dá)到高峰期時(shí),會(huì)產(chǎn)生大量排隊(duì)等待和高時(shí)延,甚至出現(xiàn)拒絕服務(wù)的情況。向邊緣終端轉(zhuǎn)移計(jì)算負(fù)載可防止這一現(xiàn)象發(fā)生。??從隱私和安全來看,端側(cè)大模型從本質(zhì)上有助于保護(hù)用戶隱私,因?yàn)椴樵兒蛡€(gè)人信息完全保留在終端上。對(duì)于企業(yè)和工作場所等場景中使用的生成式AI,這有助于解決保護(hù)公司保密信息的難題。從個(gè)性化來看,數(shù)字助手將能夠在不犧牲隱私的情況下,根據(jù)用戶的表情、喜好和個(gè)性進(jìn)行定制。所形成的用戶畫像能夠從實(shí)際行為、價(jià)值觀、痛點(diǎn)、需求、顧慮和問題等方面來體現(xiàn)一個(gè)用戶,并且可以隨著時(shí)間推移進(jìn)行學(xué)習(xí)和演進(jìn)。來源:中國統(tǒng)計(jì)局,CNNIC,頭豹研究院400-072-55888行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——市場規(guī)模?下游市場需求的強(qiáng)勁增長,特別是手機(jī)與自動(dòng)駕駛行業(yè)的蓬勃發(fā)展,正強(qiáng)力拉動(dòng)端側(cè)大模型市場的擴(kuò)張,2023年中國端側(cè)大模型市場規(guī)模達(dá)8億元,預(yù)計(jì)2024年中國端側(cè)大模型市場將達(dá)到21億元中國端側(cè)大模型行業(yè)——市場規(guī)模中國端側(cè)大模型市場規(guī)模單位:億元CAGR:58%7961473121820232024E2025E2026E2027E2028E?受實(shí)際落地情況的影響,2023年中國端側(cè)大模型市場規(guī)模達(dá)8億元,持樂觀態(tài)度估計(jì),預(yù)計(jì)2024年中國端側(cè)大模型市場將達(dá)到21億元生成式AI市場的蓬勃興起,正驅(qū)使大模型廠商積極探索端側(cè)應(yīng)用新藍(lán)海,以此作為增長的新引擎。端側(cè)大模型通過在設(shè)備本地運(yùn)行,有效降低了數(shù)據(jù)傳輸延遲,增強(qiáng)了隱私保護(hù),拓寬了AI應(yīng)用場景的廣度與深度。例如,智能手機(jī)集成的AI攝影功能,能實(shí)時(shí)識(shí)別場景并優(yōu)化圖像質(zhì)量;可穿戴設(shè)備利用端側(cè)模型監(jiān)測健康指標(biāo),提供即時(shí)反饋。與此同時(shí),隨著AI芯片等算力市場帶動(dòng),為端側(cè)大模型打開新的市場空間。高性能、低功耗的AI芯片設(shè)計(jì)使得復(fù)雜模型能夠在手機(jī)、物聯(lián)網(wǎng)設(shè)備等終端高效運(yùn)行,無需依賴云服務(wù),顯著提升響應(yīng)速度與用戶體驗(yàn)。2021年全球AI芯片市場規(guī)模達(dá)到200億美元,預(yù)計(jì)到2025年將超過700億美元,其中端側(cè)AI芯片占比快速提升,成為增長的重要?jiǎng)恿Α?下游市場需求的強(qiáng)勁增長,特別是手機(jī)與自動(dòng)駕駛行業(yè)的蓬勃發(fā)展,正強(qiáng)力拉動(dòng)端側(cè)大模型市場的擴(kuò)張手機(jī)作為個(gè)人智能終端的核心,正集成更先進(jìn)的AI功能以提供個(gè)性化服務(wù)與優(yōu)化用戶體驗(yàn),如榮耀Magic系列利用端側(cè)AI大模型實(shí)現(xiàn)偏好理解與多模態(tài)交互。同時(shí),自動(dòng)駕駛領(lǐng)域?qū)?shí)時(shí)性與安全性要求極高,推動(dòng)了BEV+Transformer等技術(shù)與端側(cè)大模型的融合,百度ApolloADFM等L4級(jí)自動(dòng)駕駛大模型的推出,標(biāo)志著該領(lǐng)域邁向商用新階段。來源:專家訪談,企業(yè)公告,頭豹研究院400-072-55889行業(yè)研讀

|2024/5Chapter2產(chǎn)業(yè)鏈分析?

產(chǎn)業(yè)鏈圖譜?

模型壓縮技術(shù)?

成本構(gòu)成?

廠商類型?

行業(yè)場景?

業(yè)務(wù)場景400-072-5588行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——產(chǎn)業(yè)鏈?中國端側(cè)大模型上游主要包括AI芯片供應(yīng)商、云計(jì)算服務(wù)商以及數(shù)據(jù)服務(wù)商,中游為端側(cè)大模型科技廠商和端側(cè)科技企業(yè),主要通過設(shè)備企業(yè)最終應(yīng)用到汽車、教育等各行各業(yè)中國端側(cè)大模型行業(yè)——產(chǎn)業(yè)鏈分析AI芯片供應(yīng)商云計(jì)算服務(wù)提供商上游數(shù)據(jù)服務(wù)商端側(cè)大模型科技廠商中游應(yīng)用場景文本場景圖像場景視頻場景音頻場景多模態(tài)場景游汽車金融教育醫(yī)療泛娛樂其他來源:專家訪談,頭豹研究院400-072-558811行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——模型壓縮技術(shù)?通過知識(shí)蒸餾,端側(cè)大模型能夠在保持較高性能的同時(shí),大幅減少模型參數(shù)量和計(jì)算復(fù)雜度。這種技術(shù)使得復(fù)雜的AI模型可在資源受限的端側(cè)設(shè)備上高效運(yùn)行,實(shí)現(xiàn)低能耗、高響應(yīng)速度和高準(zhǔn)確度的AI推理端側(cè)大模型壓縮技術(shù)——知識(shí)蒸餾TeachermodelLayer1Layer2Layerm…SoftlabelsSoftmax(T=t)distillationlossLossFninputXSoftpredictionsStudent(distilled)

modelSoftmax(T=t)Softmax(T=1)Layer1Layer2Layern…h(huán)ardpredictionstudentlossLossFnhardlabely(groundtruth)?知識(shí)蒸餾的基本原理首先,在強(qiáng)大的計(jì)算資源和海量數(shù)據(jù)集上訓(xùn)練一個(gè)高性能的大模型,稱為教師模型。教師模型在輸入訓(xùn)練數(shù)據(jù)時(shí),不僅輸出最終的分類結(jié)果(硬標(biāo)簽),還輸出每個(gè)類別的概率分布(軟標(biāo)簽),這些軟標(biāo)簽包含了更多關(guān)于輸入數(shù)據(jù)的細(xì)微信息和模式。在訓(xùn)練較小的學(xué)生模型時(shí),不僅使用原始數(shù)據(jù)的硬標(biāo)簽,還使用教師模型生成的軟標(biāo)簽。學(xué)生模型通過學(xué)習(xí)這些軟標(biāo)簽,能夠捕捉到教師模型中包含的豐富知識(shí)。?知識(shí)蒸餾在端側(cè)大模型中的應(yīng)用知識(shí)蒸餾使得學(xué)生模型能夠在保持較高準(zhǔn)確度的同時(shí),顯著減少參數(shù)量。例如,TinyBERT通過知識(shí)蒸餾技術(shù)將BERT的參數(shù)量減少到原來的1/7左右,但在許多自然語言處理任務(wù)中仍能保持較好的性能。這使得學(xué)生模型能夠適應(yīng)端側(cè)設(shè)備的計(jì)算和存儲(chǔ)限制。較小的學(xué)生模型在推理階段需要的計(jì)算資源更少,推理速度更快。這對(duì)于資源受限的端側(cè)設(shè)備尤為重要。端側(cè)設(shè)備通常對(duì)能耗有嚴(yán)格限制。知識(shí)蒸餾生成的學(xué)生模型由于計(jì)算復(fù)雜度低,能夠以較低的能耗完成推理任務(wù)。例如,在物聯(lián)網(wǎng)設(shè)備和移動(dòng)設(shè)備中,學(xué)生模型的低能耗運(yùn)行方式使其能夠長時(shí)間持續(xù)工作,而不會(huì)顯著消耗電池電量。知識(shí)蒸餾生成的學(xué)生模型可以針對(duì)不同的端側(cè)設(shè)備進(jìn)行優(yōu)化。例如,針對(duì)特定硬件架構(gòu)進(jìn)行剪枝和量化,使模型在特定設(shè)備上達(dá)到最佳性能。此外,學(xué)生模型還可以通過在線學(xué)習(xí)機(jī)制,在端側(cè)設(shè)備上不斷適應(yīng)和優(yōu)化,以滿足動(dòng)態(tài)變化的應(yīng)用需求。來源:專家訪談,智慧文旅,頭豹研究院400-072-558812行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——成本構(gòu)成?AI芯片作為加速端側(cè)大模型的關(guān)鍵技術(shù),提供高效計(jì)算和能耗比,使得大規(guī)模模型在端側(cè)設(shè)備上高效運(yùn)行,研發(fā)人員及顯卡成本需兼顧,確保研發(fā)經(jīng)濟(jì)可持續(xù)端側(cè)大模型成本構(gòu)成分析硬件成本包括端側(cè)大模型部署所必需的硬件設(shè)備,如AI芯片。AI芯片專門設(shè)計(jì)用于加速深度學(xué)習(xí)任務(wù),相比通用處理器,AI芯片可提供更高的計(jì)算效率,降低模型執(zhí)行的能耗和延遲。硬件成本研發(fā)成本其他成本研發(fā)成本是開發(fā)和優(yōu)化端側(cè)大模型所需的成本,主要為研發(fā)人員的人力成本以及設(shè)備成本。人力成本涉及到研究人員、工程師和數(shù)據(jù)科學(xué)家等的工資、培訓(xùn)和福利待遇。設(shè)備成本包括用于開發(fā)和測試的顯卡、服務(wù)器和云服務(wù)等。10%30%60%其他成本包括除了硬件和研發(fā)成本之外,還包括各種間接成本,例如管理成本、運(yùn)營成本和市場推廣成本等。?AI芯片成為加速端側(cè)大模型應(yīng)用的關(guān)鍵技術(shù)成本AI芯片作為專門設(shè)計(jì)用于加速深度學(xué)習(xí)任務(wù)的硬件,具有較高的能效比和計(jì)算性能,成為了實(shí)現(xiàn)端側(cè)大模型高效部署的關(guān)鍵。一方面,AI芯片能夠提供更高的計(jì)算性能和能效比,從而加速端側(cè)大模型的推理和執(zhí)行速度。例如,Google的TPU能夠在相同的功耗下實(shí)現(xiàn)比傳統(tǒng)GPU更高的性能,這使得在端側(cè)設(shè)備上運(yùn)行大規(guī)模的神經(jīng)網(wǎng)絡(luò)模型成為可能。另一方面,AI芯片也能夠提供更低的功耗和更小的尺寸,適合嵌入到各種端側(cè)設(shè)備中,為端側(cè)大模型的應(yīng)用提供了更廣泛的可能性和更好的用戶體驗(yàn)。?在端側(cè)大模型的開發(fā)過程中,需要綜合考慮研發(fā)人員的成本和顯卡的成本,以確保項(xiàng)目的順利進(jìn)行和成功實(shí)施深度學(xué)習(xí)模型的研發(fā)需要具有深度學(xué)習(xí)和機(jī)器學(xué)習(xí)背景的專業(yè)人員,他們負(fù)責(zé)模型的設(shè)計(jì)、算法優(yōu)化、超參數(shù)調(diào)整等工作。美國的機(jī)器學(xué)習(xí)工程師的平均年薪約為12萬美元,而深度學(xué)習(xí)工程師的平均年薪則更高,約為14萬美元。因此,合理控制研發(fā)人員的成本,并保證其具備高水平的技能和專業(yè)知識(shí),對(duì)于端側(cè)大模型的研發(fā)和應(yīng)用至關(guān)重要。其次,顯卡的性能和規(guī)模直接影響著模型訓(xùn)練的速度和效率。一臺(tái)高端顯卡如NVIDIAGeForceRTX3,090的價(jià)格約為1,500美元。此外,顯卡可以通過云服務(wù)提供商租用,這也是許多企業(yè)在進(jìn)行端側(cè)大模型的研發(fā)和優(yōu)化時(shí)采取的一種常見方式。但在長期使用過程中,租用成本也會(huì)成為企業(yè)的一項(xiàng)不小的支出。因此,企業(yè)需要綜合考慮研發(fā)人員的成本、顯卡租用成本以及其他相關(guān)成本,以確保研發(fā)過程的經(jīng)濟(jì)性和可持續(xù)性。來源:專家訪談,智慧文旅,頭豹研究院400-072-558813行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——行業(yè)場景?取決于行業(yè)對(duì)數(shù)據(jù)安全、隱私保護(hù)的需求、行業(yè)本身智能設(shè)備的普及程度以及AI大模型技術(shù)的成熟度,這些因素的相互作用和共同推動(dòng),端側(cè)大模型將推動(dòng)各行業(yè)智能化發(fā)展的步伐中國端側(cè)大模型行業(yè)——行業(yè)場景分析高政務(wù)金融法律汽車互聯(lián)網(wǎng)科技技術(shù)成熟度工業(yè)教育醫(yī)療電商泛娛樂其他傳統(tǒng)產(chǎn)業(yè)低高市場發(fā)展?jié)摿π袠I(yè)對(duì)數(shù)據(jù)安全和隱私保護(hù)的需求將直接影響端側(cè)大模型的應(yīng)用?隨著數(shù)據(jù)泄露和隱私問題的日益突出,各行業(yè)對(duì)于數(shù)據(jù)的保護(hù)需求愈發(fā)迫切。因此,在端側(cè)大模型的應(yīng)用中,需要采取一系列的技術(shù)手段來確保數(shù)據(jù)的安全性和隱私性,如聯(lián)合學(xué)習(xí)、加密計(jì)算等。這將促使行業(yè)在應(yīng)用端側(cè)大模型時(shí)更加謹(jǐn)慎和審慎,但也為解決數(shù)據(jù)安全隱患提供了新的解決方案。因此,端側(cè)大模型在金融、醫(yī)療、政務(wù)等對(duì)數(shù)據(jù)安全要求較高的行業(yè)具有較大發(fā)展?jié)摿Α?行業(yè)本身智能設(shè)備的普及程度也將影響端側(cè)大模型的發(fā)展前景隨著智能設(shè)備的普及程度提高,對(duì)于端側(cè)AI應(yīng)用的需求也將相應(yīng)增加。這些智能設(shè)備不僅提供了豐富的數(shù)據(jù)來源,也為端側(cè)大模型的運(yùn)行提供了更多的計(jì)算資源和場景。例如,隨著智慧教堂的普及率加深,教育成為端側(cè)大模型未來發(fā)展的潛力場景之一。此外,在醫(yī)療領(lǐng)域,家用健康監(jiān)測設(shè)備能夠使數(shù)據(jù)存儲(chǔ)在設(shè)備端,更能滿足客戶的隱私性。?AI大模型技術(shù)的成熟度是端側(cè)大模型發(fā)展的重要因素之一端側(cè)大模型應(yīng)用依賴于AI大模型的技術(shù)基礎(chǔ),隨著AI大模型在自然語言處理、計(jì)算機(jī)視覺、語音識(shí)別等領(lǐng)域的發(fā)展和成熟,端側(cè)大模型應(yīng)用也得到推動(dòng);各行業(yè)對(duì)端側(cè)設(shè)備上運(yùn)行的大型AI模型的需求不斷增加,促使端側(cè)大模型應(yīng)用成熟度與AI大模型保持一致;同時(shí),技術(shù)轉(zhuǎn)移和跨界應(yīng)用使得一些在特定行業(yè)中成熟的AI大模型技術(shù)可以被應(yīng)用到其他行業(yè)的端側(cè)設(shè)備中,推動(dòng)兩者的同步發(fā)展。來源:專家訪談,頭豹研究院400-072-558814行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——業(yè)務(wù)場景?端側(cè)大模型能在保障數(shù)據(jù)隱私的同時(shí),實(shí)現(xiàn)低延遲的實(shí)時(shí)計(jì)算,并提供高度個(gè)性化的服務(wù),因此基于對(duì)數(shù)據(jù)隱私、計(jì)算實(shí)時(shí)以及個(gè)性化等強(qiáng)需求,AI手機(jī)、自動(dòng)駕駛和機(jī)器人成為端側(cè)大模型核心應(yīng)用場景端側(cè)大模型業(yè)務(wù)場景分析——按不同的設(shè)備類型分類AI手機(jī)自動(dòng)駕駛機(jī)器人其他場景?基于對(duì)數(shù)據(jù)隱私性、計(jì)算實(shí)時(shí)性以及市場個(gè)性化需求等因素,AI手機(jī)、自動(dòng)駕駛以及機(jī)器人成為推動(dòng)端側(cè)大模型的三大核心應(yīng)用場景。強(qiáng)需求場景?AI手機(jī):數(shù)據(jù)隱私性和計(jì)算實(shí)時(shí)性現(xiàn)代智能手機(jī)在語音助手、圖像識(shí)別、自然語言處理等方面廣泛應(yīng)用AI技術(shù),這些功能需要處理大量的用戶數(shù)據(jù)。如果將這些數(shù)據(jù)傳輸?shù)皆贫诉M(jìn)行處理,不僅增加了隱私泄露的風(fēng)險(xiǎn),還會(huì)由于網(wǎng)絡(luò)延遲導(dǎo)致用戶體驗(yàn)下降。端側(cè)大模型可以在本地設(shè)備上進(jìn)行數(shù)據(jù)處理,確保用戶的敏感信息不被泄露,同時(shí)大幅提升計(jì)算的實(shí)時(shí)性。?自動(dòng)駕駛:實(shí)時(shí)決策和安全性自動(dòng)駕駛車輛需要在復(fù)雜的道路環(huán)境中實(shí)時(shí)做出決策,如避讓行人、識(shí)別交通信號(hào)和處理突發(fā)情況。這些決策需要極低的延遲,因?yàn)槿魏窝诱`都可能帶來安全隱患。端側(cè)大模型能夠在車輛本地進(jìn)行高效計(jì)算,確保實(shí)時(shí)響應(yīng)和高精度決策,從而提升自動(dòng)駕駛系統(tǒng)的安全性和可靠性。此外,端側(cè)計(jì)算減少了對(duì)網(wǎng)絡(luò)連接的依賴,在網(wǎng)絡(luò)條件不佳的情況下仍能保持車輛的正常運(yùn)行。?機(jī)器人:個(gè)性化服務(wù)和效率提升在機(jī)器人應(yīng)用中,特別是家庭服務(wù)機(jī)器人和醫(yī)療機(jī)器人,端側(cè)大模型的優(yōu)勢在于能夠提供個(gè)性化服務(wù)和提高效率。機(jī)器人需要根據(jù)用戶的具體需求和偏好調(diào)整其行為和功能,例如在家庭中提供特定的照護(hù)服務(wù)或在醫(yī)院中執(zhí)行特定的醫(yī)療任務(wù)。通過在本地處理數(shù)據(jù),機(jī)器人可以更好地理解用戶的行為和習(xí)慣,從而提供更加個(gè)性化的服務(wù)。此外,端側(cè)計(jì)算能夠提升機(jī)器人的響應(yīng)速度和任務(wù)執(zhí)行效率,在面對(duì)復(fù)雜環(huán)境和任務(wù)時(shí),機(jī)器人可以迅速做出決策和調(diào)整,確保任務(wù)的準(zhǔn)確性和高效性。這種能力不僅提高了用戶體驗(yàn),還拓展了機(jī)器人的應(yīng)用范圍和市場潛力。來源:專家訪談,頭豹研究院400-072-558815行業(yè)研讀

|2024/5中國:人工智能系列業(yè)務(wù)場景(接上頁)?隨著技術(shù)的不斷進(jìn)步和應(yīng)用場景的拓展,端側(cè)大模型各業(yè)務(wù)場景中存在差異,文本生成和圖片生成場景相對(duì)較成熟,音頻生成場景逐步發(fā)展,視頻生成和多模態(tài)生成場景尚處于起步階段端側(cè)大模型業(yè)務(wù)場景分析——按不同的技術(shù)場景分類云端端側(cè)文本生成圖片生成音頻生成視頻生成多模態(tài)生成0.11101001000模型規(guī)模(十億參數(shù))?文本生成與圖片生成的業(yè)務(wù)場景文本生成模型如GPT系列在端側(cè)的應(yīng)用逐漸成熟,尤其是在智能手機(jī)等移動(dòng)設(shè)備上的應(yīng)用。通過模型壓縮和優(yōu)化,現(xiàn)有的文本生成模型已經(jīng)可以在資源受限的環(huán)境下高效運(yùn)行。圖片生成模型的端側(cè)應(yīng)用也在逐步發(fā)展,尤其是一些輕量級(jí)的圖像生成模型。這些模型可以用于圖像風(fēng)格轉(zhuǎn)換、圖像修復(fù)、圖像增強(qiáng)等應(yīng)用,為用戶提供更豐富的圖像處理功能。隨著硬件技術(shù)的進(jìn)步和模型算法的改進(jìn),圖片生成模型在端側(cè)的應(yīng)用將進(jìn)一步成熟。?音頻生成的業(yè)務(wù)場景音頻生成模型在端側(cè)的應(yīng)用相對(duì)較新,但也在不斷發(fā)展。目前一些語音合成模型已經(jīng)可以在端側(cè)設(shè)備上實(shí)現(xiàn)實(shí)時(shí)的語音合成功能,如智能語音助手、語音提示等。?視頻生成和多模態(tài)生成的業(yè)務(wù)場景相比于文本和圖片生成模型,視頻生成模型的端側(cè)應(yīng)用相對(duì)較少,主要原因是視頻數(shù)據(jù)的復(fù)雜性和處理量較大。而一些視頻壓縮和編解碼技術(shù)的進(jìn)步以及硬件加速器的應(yīng)用,為視頻生成模型在端側(cè)的應(yīng)用提供一定的可能性。多模態(tài)生成模型是指同時(shí)處理多種類型數(shù)據(jù)的生成模型,其在端側(cè)的應(yīng)用也在逐步探索和發(fā)展,如智能多模態(tài)搜索、多模態(tài)推薦系統(tǒng)等,但其成熟度相對(duì)較低,需要更多的研究和技術(shù)突破。來源:專家訪談,頭豹研究院400-072-558816行業(yè)研讀

|2024/5Chapter3行業(yè)分析?

政策分析?

行業(yè)壁壘?

競爭格局?

發(fā)展趨勢400-072-5588行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——政策分析?中國政府將人工智能產(chǎn)業(yè)視為中國國家戰(zhàn)略核心,在端側(cè)大模型方面展現(xiàn)出積極的支持立場。在AI基礎(chǔ)設(shè)施以及生成式AI方面設(shè)立規(guī)范,整體政策環(huán)境對(duì)AI產(chǎn)業(yè)及端側(cè)大模型的健康發(fā)展表現(xiàn)有利中國端側(cè)大模型相關(guān)政策,2020-2024年政策名稱頒布日期

頒布主體主要內(nèi)容及影響一方面,該辦法支持人工智能算法、框架等基礎(chǔ)技術(shù)的自主創(chuàng)新、推廣應(yīng)用、國際合作,為端側(cè)大模型發(fā)展提供了政策支持和技術(shù)保障;另一方面,該辦法要求端側(cè)大模型在數(shù)據(jù)來源、算法設(shè)計(jì)、內(nèi)容標(biāo)識(shí)等方面遵守法律法規(guī)的要求,尊重社會(huì)公德、公序良俗,防止生成虛假信息、侵犯他人權(quán)益、造成社會(huì)不良影響等問題,為端側(cè)大模型發(fā)展提供了規(guī)范引導(dǎo)和監(jiān)督約束《針對(duì)生成式人工智能服務(wù)出臺(tái)管理辦法》2023-04網(wǎng)信部不僅在技術(shù)基礎(chǔ)、數(shù)據(jù)資源、應(yīng)用場景、技術(shù)創(chuàng)新和政策環(huán)境等多個(gè)層面提供了支持和指導(dǎo),還明確了發(fā)展方向和合規(guī)要求,為端側(cè)大模型的健康、快速發(fā)展鋪平了道路。這促使相關(guān)企業(yè)需不斷提升技術(shù)創(chuàng)新能力,加強(qiáng)數(shù)據(jù)安全與隱私保護(hù),深化與實(shí)體經(jīng)濟(jì)的融合,以適應(yīng)并推動(dòng)數(shù)字中國建設(shè)的總體布局《數(shù)字中國建設(shè)整體布局規(guī)劃》

2023-02國務(wù)院科技部一方面,該指導(dǎo)意見鼓勵(lì)在各行業(yè)領(lǐng)域深入挖掘人工智能技術(shù)應(yīng)用場景,為端側(cè)大模型提供了豐富多樣的應(yīng)用場景,如聊天和文本生成、機(jī)器翻譯、語音識(shí)別與合成、自然語言理解與推理等;另一方面,該指導(dǎo)意見強(qiáng)調(diào)以需求為牽引謀劃人工智能技術(shù)應(yīng)用場景,為端側(cè)大模型提供了需求驅(qū)動(dòng)的動(dòng)力,促進(jìn)端側(cè)大模型在解決實(shí)際問題中優(yōu)化升級(jí)《關(guān)于加快場景創(chuàng)新以人工智能高水平應(yīng)用促進(jìn)經(jīng)濟(jì)高質(zhì)量發(fā)展

2022-07的指導(dǎo)意見》發(fā)揮科技支撐和引領(lǐng)作用,支持有條件的地區(qū)和高校、科研機(jī)構(gòu)、企業(yè)開展語言智能技術(shù)研究,著力在自然語言處理、機(jī)器寫作、機(jī)器翻譯、機(jī)器評(píng)測等領(lǐng)域取得實(shí)質(zhì)成果,為端側(cè)大模型奠定技術(shù)實(shí)力《關(guān)于促進(jìn)新一代人工智能產(chǎn)業(yè)2022-012021-11教育部工信部高質(zhì)量發(fā)展的若干措施》從事互聯(lián)網(wǎng)信息服務(wù)的企業(yè)應(yīng)建立客服熱線電話,并在網(wǎng)站、APP等顯著位置公示客服熱線電話號(hào)碼。鼓勵(lì)具備條件的企業(yè)提供充足的人工客服坐席《工業(yè)和信息化部關(guān)于開展信息通信服務(wù)感知提升行動(dòng)的通知》指南規(guī)劃了新一代人工智能標(biāo)準(zhǔn)體系的總體框架和具體內(nèi)容,包括標(biāo)準(zhǔn)目錄、標(biāo)準(zhǔn)體系結(jié)構(gòu)、標(biāo)準(zhǔn)分類和標(biāo)準(zhǔn)制定程序等。通過建設(shè)完備、系統(tǒng)、規(guī)范的人工智能標(biāo)準(zhǔn)體系,促進(jìn)人工智能技術(shù)的創(chuàng)新和應(yīng)用,保障人工智能的安全和可持續(xù)發(fā)展《國家新一代人工智能標(biāo)準(zhǔn)體系建設(shè)指南》2020-07網(wǎng)信辦來源:政府各部門,頭豹研究院400-072-558818行業(yè)研讀

|2024/5中國:人工智能系列中國端側(cè)大模型市場探析——競爭格局?依托技術(shù)實(shí)力和生態(tài)建設(shè),頭部大模型廠商紛紛投入端側(cè)大模型市場,利用在云端大模型領(lǐng)域的技術(shù)優(yōu)勢,商湯商量、阿里通義以及面壁智能率先在端側(cè)大模型領(lǐng)域取得領(lǐng)先突破中國端側(cè)大模型行業(yè)——競爭格局強(qiáng)領(lǐng)導(dǎo)者商湯阿里云面壁智能技術(shù)力百度智能云騰訊云華為云科大訊飛強(qiáng)市場力依托技術(shù)實(shí)力和生態(tài)建設(shè),頭部大模型廠商紛紛投入端側(cè)大模型市場弱?頭部大模型廠商依托其深厚的技術(shù)積累和成熟的生態(tài)系統(tǒng),正加速布局端側(cè)大模型市場。一方面,這些廠商利用在云端大模型領(lǐng)域的技術(shù)優(yōu)勢,通過算法優(yōu)化、模型壓縮等先進(jìn)技術(shù),有效解決了端側(cè)算力限制問題,使得復(fù)雜的AI功能能夠在移動(dòng)設(shè)備、物聯(lián)網(wǎng)終端等平臺(tái)上高效運(yùn)行,滿足用戶對(duì)即時(shí)性、隱私保護(hù)及離線使用的需求,如商湯發(fā)布1.8B端側(cè)大模型,阿里也發(fā)布18億參數(shù)的通義端側(cè)大模型。另一方面,通過構(gòu)建開放的生態(tài)平臺(tái),整合上下游資源,賦能開發(fā)者與行業(yè)伙伴,共同探索端側(cè)AI的多元化應(yīng)用場景。?技術(shù)融合與創(chuàng)新驅(qū)動(dòng)將加劇端側(cè)大模型市場競爭隨著端側(cè)大模型技術(shù)的日益成熟,未來中國端側(cè)大模型行業(yè)的競爭格局將呈現(xiàn)出技術(shù)深度融合與創(chuàng)新驅(qū)動(dòng)的新態(tài)勢。一方面,技術(shù)融合將成為競爭的核心要素。廠商不再局限于單一技術(shù)的優(yōu)化,而是趨向于跨領(lǐng)域技術(shù)的集成,如將自然語言處理、計(jì)算機(jī)視覺、邊緣計(jì)算等技術(shù)與大模型結(jié)合,打造綜合型AI解決方案。?生態(tài)系統(tǒng)構(gòu)建與合作模式的創(chuàng)新將成為塑造競爭格局的關(guān)鍵在端側(cè)大模型的部署與應(yīng)用中,單一企業(yè)的力量難以覆蓋全部產(chǎn)業(yè)鏈環(huán)節(jié),因此構(gòu)建開放合作的生態(tài)系統(tǒng),促進(jìn)技術(shù)、數(shù)據(jù)、應(yīng)用和服務(wù)的共享,將成為提升競爭力的重要途徑。這包括與芯片制造商、硬件供應(yīng)商、軟件開發(fā)商、行業(yè)應(yīng)用提供商等多方面的深度合作,形成共生共贏的生態(tài)體系。例如端側(cè)大模型推動(dòng)AI芯片市場發(fā)展,2023年全球邊緣AI芯片出貨預(yù)計(jì)達(dá)22.86億顆。此外,創(chuàng)新的合作模式,如聯(lián)合研發(fā)、數(shù)據(jù)共享協(xié)議、靈活的IP授權(quán)方式等,將促進(jìn)資源優(yōu)化配置,加速技術(shù)產(chǎn)品的迭代與市場拓展。來源:企業(yè)官網(wǎng),頭豹研究院400-072-558819行業(yè)研讀

|2024/5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論