版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南廣益實(shí)驗(yàn)中學(xué)2024年中考數(shù)學(xué)最后一模試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如果解關(guān)于x的分式方程時(shí)出現(xiàn)增根,那么m的值為A.-2 B.2 C.4 D.-42.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標(biāo)系,并且“過道也占一個(gè)位置”,例如小王所對(duì)應(yīng)的坐標(biāo)為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對(duì)應(yīng)的坐標(biāo)是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)3.關(guān)于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個(gè)不相等的正實(shí)數(shù)根,則m的取值范圍是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<24.點(diǎn)M(a,2a)在反比例函數(shù)y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±25.如圖是棋盤的一部分,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,已知棋子“車”的坐標(biāo)為(-2,1),棋子“馬”的坐標(biāo)為(3,-1),則棋子“炮”的坐標(biāo)為()A.(1,1) B.(2,1) C.(2,2) D.(3,1)6.下列計(jì)算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)6﹣a2=a4 D.a(chǎn)5+a5=a107.若關(guān)于的方程的兩根互為倒數(shù),則的值為()A. B.1 C.-1 D.08.甲、乙兩船從相距300km的A、B兩地同時(shí)出發(fā)相向而行,甲船從A地順流航行180km時(shí)與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=9.如圖,在直角坐標(biāo)系中,直線與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線()交于點(diǎn)C,過點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:①;②當(dāng)0<x<3時(shí),;③如圖,當(dāng)x=3時(shí),EF=;④當(dāng)x>0時(shí),隨x的增大而增大,隨x的增大而減?。渲姓_結(jié)論的個(gè)數(shù)是()A.1 B.2 C.3 D.410.如圖,矩形是由三個(gè)全等矩形拼成的,與,,,,分別交于點(diǎn),設(shè),,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.12二、填空題(共7小題,每小題3分,滿分21分)11.在由乙猜甲剛才想的數(shù)字游戲中,把乙猜的數(shù)字記為b且,a,b是0,1,2,3四個(gè)數(shù)中的其中某一個(gè),若|a﹣b|≤1則稱甲乙”心有靈犀”.現(xiàn)任意找兩個(gè)人玩這個(gè)游戲,得出他們”心有靈犀”的概率為_____.12.飛機(jī)著陸后滑行的距離y(單位:m)關(guān)于滑行時(shí)間t(單位:s)的函數(shù)解析式是y=60t﹣.在飛機(jī)著陸滑行中,最后4s滑行的距離是_____m.13.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點(diǎn)E,若⊙O的半徑是5,CD=8,則AE=______.14.計(jì)算:2(a-b)+3b=___________.15.矩形ABCD中,AB=8,AD=6,E為BC邊上一點(diǎn),將△ABE沿著AE翻折,點(diǎn)B落在點(diǎn)F處,當(dāng)△EFC為直角三角形時(shí)BE=_____.16.若一個(gè)扇形的圓心角為60°,面積為6π,則這個(gè)扇形的半徑為__________.17.反比例函數(shù)的圖象經(jīng)過點(diǎn)(﹣3,2),則k的值是_____.當(dāng)x大于0時(shí),y隨x的增大而_____.(填增大或減?。┤⒔獯痤}(共7小題,滿分69分)18.(10分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點(diǎn),AC∥OP,M是直徑AB上的動(dòng)點(diǎn),A與直線CM上的點(diǎn)連線距離的最小值為d,B與直線CM上的點(diǎn)連線距離的最小值為f.(1)求證:PC是⊙O的切線;(2)設(shè)OP=AC,求∠CPO的正弦值;(3)設(shè)AC=9,AB=15,求d+f的取值范圍.19.(5分)如圖,為的直徑,,為上一點(diǎn),過點(diǎn)作的弦,設(shè).(1)若時(shí),求、的度數(shù)各是多少?(2)當(dāng)時(shí),是否存在正實(shí)數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長(zhǎng).20.(8分)關(guān)于x的一元二次方程x2+(m-1)x-(2m+3)=1.(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)寫出一個(gè)m的值,并求出此時(shí)方程的根.21.(10分)如圖,AB為⊙O的直徑,直線BM⊥AB于點(diǎn)B,點(diǎn)C在⊙O上,分別連接BC,AC,且AC的延長(zhǎng)線交BM于點(diǎn)D,CF為⊙O的切線交BM于點(diǎn)F.(1)求證:CF=DF;(2)連接OF,若AB=10,BC=6,求線段OF的長(zhǎng).22.(10分)已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點(diǎn)M,N,F分別為AB,ED,AD的中點(diǎn),∠B=∠EDC=45°,(1)求證MF=NF(2)當(dāng)∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時(shí),請(qǐng)猜想線段MF,NF之間的數(shù)量關(guān)系.(不必證明)23.(12分)先化簡(jiǎn),再求值:,其中x是滿足不等式﹣(x﹣1)≥的非負(fù)整數(shù)解.24.(14分)如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長(zhǎng)線于點(diǎn)D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】
,去分母,方程兩邊同時(shí)乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.當(dāng)x=1時(shí),m+4=1﹣1,m=﹣4,故選D.2、C【解析】
根據(jù)題意知小李所對(duì)應(yīng)的坐標(biāo)是(7,4).故選C.3、D【解析】
根據(jù)一元二次方程的根的判別式的意義得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2)>0,解得m>且m≠﹣2,再利用根與系數(shù)的關(guān)系得到,m﹣2≠0,解得<m<2,即可求出答案.【詳解】解:由題意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個(gè)不相等的正實(shí)數(shù)根,∴﹣>0,m﹣2≠0,∴<m<2,∵m>,∴<m<2,故選:D.【點(diǎn)睛】本題主要考查對(duì)根的判別式和根與系數(shù)的關(guān)系的理解能力及計(jì)算能力,掌握根據(jù)方程根的情況確定方程中字母系數(shù)的取值范圍是解題的關(guān)鍵.4、D【解析】
根據(jù)點(diǎn)M(a,2a)在反比例函數(shù)y=的圖象上,可得:,然后解方程即可求解.【詳解】因?yàn)辄c(diǎn)M(a,2a)在反比例函數(shù)y=的圖象上,可得:,,解得:,故選D.【點(diǎn)睛】本題主要考查反比例函數(shù)圖象的上點(diǎn)的特征,解決本題的關(guān)鍵是要熟練掌握反比例函數(shù)圖象上點(diǎn)的特征.5、B【解析】
直接利用已知點(diǎn)坐標(biāo)建立平面直角坐標(biāo)系進(jìn)而得出答案.【詳解】解:根據(jù)棋子“車”的坐標(biāo)為(-2,1),建立如下平面直角坐標(biāo)系:∴棋子“炮”的坐標(biāo)為(2,1),故答案為:B.【點(diǎn)睛】本題考查了坐標(biāo)確定位置,正確建立平面直角坐標(biāo)系是解題的關(guān)鍵.6、B【解析】
根據(jù)同底數(shù)冪乘法、冪的乘方的運(yùn)算性質(zhì)計(jì)算后利用排除法求解.【詳解】A、a2?a3=a5,錯(cuò)誤;B、(a2)3=a6,正確;C、不是同類項(xiàng),不能合并,錯(cuò)誤;D、a5+a5=2a5,錯(cuò)誤;故選B.【點(diǎn)睛】本題綜合考查了整式運(yùn)算的多個(gè)考點(diǎn),包括同底數(shù)冪的乘法、冪的乘方、合并同類項(xiàng),需熟練掌握且區(qū)分清楚,才不容易出錯(cuò).7、C【解析】
根據(jù)已知和根與系數(shù)的關(guān)系得出k2=1,求出k的值,再根據(jù)原方程有兩個(gè)實(shí)數(shù)根,即可求出符合題意的k的值.【詳解】解:設(shè)、是的兩根,由題意得:,由根與系數(shù)的關(guān)系得:,∴k2=1,解得k=1或?1,∵方程有兩個(gè)實(shí)數(shù)根,則,當(dāng)k=1時(shí),,∴k=1不合題意,故舍去,當(dāng)k=?1時(shí),,符合題意,∴k=?1,故答案為:?1.【點(diǎn)睛】本題考查的是一元二次方程根與系數(shù)的關(guān)系及相反數(shù)的定義,熟知根與系數(shù)的關(guān)系是解答此題的關(guān)鍵.8、A【解析】分析:直接利用兩船的行駛距離除以速度=時(shí)間,得出等式求出答案.詳解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點(diǎn)睛:此題主要考查了由實(shí)際問題抽象出分式方程,正確表示出行駛的時(shí)間和速度是解題關(guān)鍵.9、C【解析】試題分析:對(duì)于直線,令x=0,得到y(tǒng)=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面積相等),選項(xiàng)①正確;∴C(2,2),把C坐標(biāo)代入反比例解析式得:k=4,即,由函數(shù)圖象得:當(dāng)0<x<2時(shí),,選項(xiàng)②錯(cuò)誤;當(dāng)x=3時(shí),,,即EF==,選項(xiàng)③正確;當(dāng)x>0時(shí),隨x的增大而增大,隨x的增大而減小,選項(xiàng)④正確,故選C.考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.10、B【解析】
由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個(gè)全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,
∴四邊形BEFD、四邊形DFGC是平行四邊形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點(diǎn)睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
利用P(A)=,進(jìn)行計(jì)算概率.【詳解】從0,1,2,3四個(gè)數(shù)中任取兩個(gè)則|a﹣b|≤1的情況有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10種情況,甲乙出現(xiàn)的結(jié)果共有4×4=16,故出他們”心有靈犀”的概率為.故答案是:.【點(diǎn)睛】本題考查了概率的簡(jiǎn)單計(jì)算能力,是一道列舉法求概率的問題,屬于基礎(chǔ)題,可以直接應(yīng)用求概率的公式.12、24【解析】
先利用二次函數(shù)的性質(zhì)求出飛機(jī)滑行20s停止,此時(shí)滑行距離為600m,然后再將t=20-4=16代入求得16s時(shí)滑行的距離,即可求出最后4s滑行的距離.【詳解】y=60t﹣=(t-20)2+600,即飛機(jī)著陸后滑行20s時(shí)停止,滑行距離為600m,當(dāng)t=20-4=16時(shí),y=576,600-576=24,即最后4s滑行的距離是24m,故答案為24.【點(diǎn)睛】本題考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意,熟練應(yīng)用二次函數(shù)的性質(zhì)解決問題.13、2【解析】
連接OC,由垂徑定理知,點(diǎn)E是CD的中點(diǎn),在直角△OCE中,利用勾股定理即可得到關(guān)于半徑的方程,求得圓半徑即可【詳解】設(shè)AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點(diǎn)睛】此題考查垂徑定理和勾股定理,,解題的關(guān)鍵是利用勾股定理求關(guān)于半徑的方程.14、2a+b.【解析】
先去括號(hào),再合并同類項(xiàng)即可得出答案.【詳解】原式=2a-2b+3b=2a+b.故答案為:2a+b.15、3或1【解析】
分當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)和當(dāng)點(diǎn)F落在AD邊上時(shí)兩種情況求BE得長(zhǎng)即可.【詳解】當(dāng)△CEF為直角三角形時(shí),有兩種情況:當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)F處,∴∠AFE=∠B=90°,當(dāng)△CEF為直角三角形時(shí),只能得到∠EFC=90°,∴點(diǎn)A、F、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設(shè)BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當(dāng)點(diǎn)F落在AD邊上時(shí),如圖2所示.此時(shí)ABEF為正方形,∴BE=AB=1.綜上所述,BE的長(zhǎng)為3或1.故答案為3或1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應(yīng)用等知識(shí)點(diǎn),解題時(shí)要注意分情況討論.16、6【解析】設(shè)這個(gè)扇形的半徑為,根據(jù)題意可得:,解得:.故答案為.17、﹣6增大【解析】
∵反比例函數(shù)的圖象經(jīng)過點(diǎn)(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點(diǎn)睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質(zhì):(1)當(dāng)k>0時(shí),函數(shù)圖象在一,三象限,在每個(gè)象限內(nèi),y隨x的增大而減?。唬?)當(dāng)k<0時(shí),函數(shù)圖象在二,四象限,在每個(gè)象限內(nèi),y隨x的增大而增大.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2);(3)【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠A=∠OCA,由平行線的性質(zhì)得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質(zhì)得到∠OBP=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)過O作OD⊥AC于D,根據(jù)相似三角形的性質(zhì)得到CD?OP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結(jié)論;
(3)連接BC,根據(jù)勾股定理得到BC==12,當(dāng)M與A重合時(shí),得到d+f=12,當(dāng)M與B重合時(shí),得到d+f=9,于是得到結(jié)論.【詳解】(1)連接OC,
∵OA=OC,
∴∠A=∠OCA,
∵AC∥OP,
∴∠A=∠BOP,∠ACO=∠COP,
∴∠COP=∠BOP,
∵PB是⊙O的切線,AB是⊙O的直徑,
∴∠OBP=90°,
在△POC與△POB中,,
∴△COP≌△BOP,
∴∠OCP=∠OBP=90°,
∴PC是⊙O的切線;
(2)過O作OD⊥AC于D,
∴∠ODC=∠OCP=90°,CD=AC,
∵∠DCO=∠COP,
∴△ODC∽△PCO,
∴,
∴CD?OP=OC2,
∵OP=AC,
∴AC=OP,
∴CD=OP,
∴OP?OP=OC2
∴,
∴sin∠CPO=;
(3)連接BC,
∵AB是⊙O的直徑,
∴AC⊥BC,
∵AC=9,AB=1,
∴BC==12,
當(dāng)CM⊥AB時(shí),
d=AM,f=BM,
∴d+f=AM+BM=1,
當(dāng)M與B重合時(shí),
d=9,f=0,
∴d+f=9,
∴d+f的取值范圍是:9≤d+f≤1.【點(diǎn)睛】本題考查了切線的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行線的性質(zhì),圓周角定理,正確的作出輔助線是解題的關(guān)鍵.19、(1),;(2)見解析;(3).【解析】
(1)連結(jié)AD、BD,利用m求出角的關(guān)系進(jìn)而求出∠BCD、∠ACD的度數(shù);
(2)連結(jié),由所給關(guān)系式結(jié)合直徑求出AP,OP,根據(jù)弦CD最短,求出∠BCD、∠ACD的度數(shù),即可求出m的值.
(3)連結(jié)AD、BD,先求出AD,BD,AP,BP的長(zhǎng)度,利用△APC∽△DPB和△CPB∽△APD得出比例關(guān)系式,得出比例關(guān)系式結(jié)合勾股定理求出CP,PD,即可求出CD.【詳解】解:(1)如圖1,連結(jié)、.是的直徑,又,,(2)如圖2,連結(jié).,,,則,解得要使最短,則于,,,故存在這樣的值,且;(3)如圖3,連結(jié)、.由(1)可得,,,,,,,,①,②同理,③,由①得,由③得,在中,,,由②,得,.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì)和銳角三角函數(shù)關(guān)系和圓周角定理等知識(shí),掌握?qǐng)A周角定理以及垂徑定理是解題的關(guān)鍵.20、(1)見解析;(2)x1=1,x2=2【解析】
(1)根據(jù)根的判別式列出關(guān)于m的不等式,求解可得;(2)取m=-2,代入原方程,然后解方程即可.【詳解】解:(1)根據(jù)題意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,∵(m+2)2+4>1,∴方程總有兩個(gè)不相等的實(shí)數(shù)根;(2)當(dāng)m=-2時(shí),由原方程得:x2-4x+2=1.整理,得(x-1)(x-2)=1,解得x1=1,x2=2.【點(diǎn)睛】本題主要考查根的判別式與韋達(dá)定理,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>1時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;②當(dāng)△=1時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;③當(dāng)△<1時(shí),方程無實(shí)數(shù)根.21、(1)詳見解析;(2)OF=.【解析】
(1)連接OC,如圖,根據(jù)切線的性質(zhì)得∠1+∠3=90°,則可證明∠3=∠4,再根據(jù)圓周角定理得到∠ACB=90°,然后根據(jù)等角的余角相等得到∠BDC=∠5,從而根據(jù)等腰三角形的判定定理得到結(jié)論;(2)根據(jù)勾股定理計(jì)算出AC=8,再證明△ABC∽△ABD,利用相似比得到AD=,然后證明OF為△ABD的中位線,從而根據(jù)三角形中位線性質(zhì)求出OF的長(zhǎng).【詳解】(1)證明:連接OC,如圖,∵CF為切線,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB為直徑,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴,即,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF為△ABD的中位線,∴OF=AD=.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 音樂發(fā)生器 課程設(shè)計(jì)
- 課程設(shè)計(jì)電子轉(zhuǎn)盤游戲
- 機(jī)械手設(shè)計(jì)課程設(shè)計(jì)
- 2024年學(xué)籍檔案的管理制度
- 二零二五年度摩托車租賃企業(yè)知識(shí)產(chǎn)權(quán)保護(hù)合同3篇
- 老子學(xué)院研學(xué)課程設(shè)計(jì)
- 課程設(shè)計(jì)介紹家鄉(xiāng)特色
- 年度認(rèn)證機(jī)構(gòu)戰(zhàn)略市場(chǎng)規(guī)劃報(bào)告
- 2024版培訓(xùn)勞動(dòng)合同范本
- 二零二五年度醫(yī)療設(shè)備租賃免責(zé)責(zé)任書4篇
- 火災(zāi)安全教育觀后感
- 農(nóng)村自建房屋安全協(xié)議書
- 快速康復(fù)在骨科護(hù)理中的應(yīng)用
- 國(guó)民經(jīng)濟(jì)行業(yè)分類和代碼表(電子版)
- ICU患者外出檢查的護(hù)理
- 公司收購(gòu)設(shè)備合同范例
- 廣東省潮州市2023-2024學(xué)年高二上學(xué)期語文期末考試試卷(含答案)
- 2024年光伏發(fā)電項(xiàng)目EPC總包合同
- 子女放棄房產(chǎn)繼承協(xié)議書
- 氧化還原反應(yīng)配平專項(xiàng)訓(xùn)練
- 試卷(完整版)python考試復(fù)習(xí)題庫(kù)復(fù)習(xí)知識(shí)點(diǎn)試卷試題
評(píng)論
0/150
提交評(píng)論