




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
CarbonAccountingforSustainableBiofuelsINTERNATIONALENERGYAGENCYTheIEAexaminesthefullspectrumofenergyissuesIEAmembercountries:IEAassociationcountries:includingoil,gasandcoalsupplyandAustraliaAustriaArgentinaBrazildemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinitsBelgiumChinaCanadaEgyptIndiaIndonesiaKenyaMoroccoSenegalSingaporeSouthAfricaThailandUkraineCzechRepublicDenmarkEstoniaFinlandFranceGermanyGreeceHungaryIrelandItalyJapan31membercountries,13
associationcountriesandbeyond.KoreaLithuaniaLuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugalSlovakRepublicSpainSwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStatesThispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.TheEuropeanCommissionalsoparticipatesintheworkoftheIEASource:IEA.InternationalEnergyAgencyWebsite:CarbonAccountingforSustainableBiofuelsAbstractAbstractThedevelopmentofsustainablebiofuelsisatapivotaljuncture.Theyarerecognisedfortheirimportantroleindecarbonisingthetransportsector–particularlyfortheirpotentialtohelpreduceaviationandshippingemissions,andfortheircomplementaritywithEVsandenergyefficiencymeasuresinroadtransport.However,large-scaledeploymentofbiofuelsalsoraisesconcerns.Theperceivedclimatebenefitofbiofuelsdependslargelyonthecarbonintensityoftheirsupply.Thus,soundregulatoryframeworkssupportedbytransparent,science-basedcarbonintensitycalculationswillberequiredtoattracttheinvestmentsneededtoscaleupbiofuelproduction.UsingcarbonaccountingforpolicymakingpurposesisfurthercomplicatedbymixedreportsonbiofuelGHGemissionresultsandthelackofconsensusacrossmethodologies.Thepresentstudy,preparedinsupportofBrazil’sG20presidency,examinessuchcomplexitiesanddiscussesregulatoryapproachesforaccountingbiofuelcarbonintensityacrossvariousregions.IthighlightsthemainreasonsforvariabilityoflifecycleGHGemissionsofbiofuelsandemphasisesthatimpactsoflandusechangeareamajorsourceofdisagreementacrossdifferentpolicyframeworks.Itconcludesthatpoliciesneedtoadoptpragmaticapproachestofosterverifiableandperformance-basedcontinuousimprovementofsustainablebiofuels.PAGE|3CarbonAccountingforSustainableBiofuelsAcknowledgementsAcknowledgementsTheCarbonaccountingforsustainablebiofuelsreportwaspreparedbytheRenewableEnergyDivisionoftheDirectorateofEnergyMarketsandSecurityoftheInternationalEnergyAgency.ThestudywasdesignedanddirectedbyPaoloFrankl,HeadoftheRenewableEnergyDivision.TheleadauthorswereAnaAlcaldeBáscones,whoalsocoordinatedthereportproduction,andIlkkaHannula.OtherauthorswereJeremyMoorhouseandTorilBosoni(HeadoftheOilMarketDivision).ThereportbenefittedfrommajoranalyticalcontributionofexternalLCA-expertconsultantsStefanMajerandSophiaBothefromDBFZ,theGermanInstituteforBiomassResearch.WealsothankChristianeHenningandKatjaOehmichenfromDBFZfortheirsupport.ThereportfedextensivelyondiscussionsandfeedbackgatheredatanIEAworkshoponSustainableBiofuelsheldinParis,France(April2024),andseveraleventsorganisedbytheCEMBiofuturePlatformInitiativeatthe3rdmeetingoftheG20EnergyTransitionsWorkingGroupinBeloHorizonte,Brazil(May2024).SpecialthanksgotothemembersoftheBiofuturePlatformInitiativeJimSpaeth(DOE/ChairofBiofuturePlatformInitiative),KeithKline(OakRidgeNationalLaboratory)andGerardOstheimer(Manager,CEMBiofutureCampaign).ValuablecommentsandfeedbackwereprovidedbyseniormanagementandcolleagueswithintheIEA,includingKeisukeSadamori,TimurGül,UweRemme,ElizabethConnellyandShaneMcDonagh.ManyexpertsfromoutsideoftheIEAprovidedvaluableinput,commentedandreviewedthisreport.Theyinclude:CountriesBrazil(LaísdeSouzaGarcia,HeadoftheRenewableEnergyDivision–MinistryofExternalRelations,MarlonArraesJardimLeal,DirectorofBiofuels–MinistryofMinesandEnergy,HeloisaBorgesEsteves,DirectorofOil,GasandBiofuelStudies–EPE,EnergyResearchCompany);EuropeanCommission(BiljanaKulisic–DGEnergy),France(GuillaumeBoissonnet,SeniorResearcher–CEA,FrenchAlternativeEnergiesandAtomicEnergyCommission);Italy(GiovanniPerrella,EnergyDepartment,MinistryofEnvironmentandEnergySecurity);Japan(MasashiWanatabeandTakashiHasegawa,MinistryofEconomy,TradeandIndustry);UnitedKingdom(BrendanBayley,HeadClimateandAgriculture–HMTreasury,PeterColeman,HeadofBioenergyandLandUseScience,PAGE|4CarbonAccountingforSustainableBiofuelsAcknowledgementsDepartmentforEnergySecurityandNetZero);UnitedStates(JimSpaeth,ProgramManager–BioenergySystemsDevelopment&Integration,DOE).OtherOrganisationsAzimBinNorazim(InternationalAirTransportAssociation,IATA),DavidChiaramontiandMatteoPrussi(PolitecnicodiTorino),TimoGerlagh(RVO,NetherlandsEnterpriseAgency),UisungLeeandMichaelWang(ArgonneNationalLaboratory),KeithKlein(OakRidgeNationalLaboratory),MarceloMoreira(Agroicone),RenanNovaes(Embrapa,EmpresaBrasileiradePesquisaAgropecuária),LucPelkmans(CapreaSustainableSolutionsandTechnicalCoordinatoratIEABioenergyTCP).TheCEMBiofutureCampaignbroughttogethercommentsfromindustrymembers.SpecialthankstoGerardOstheimer,manageroftheBiofutureCampaign.TheCommunicationsandDigitalOfficeprovidedproductionsupport.ParticularthanksgotoJethroMullenandhisteam:AstridDumond,LivGaunt,LorenzoSquillaceandPoeliBojorquez.KristineDouaudeditedthereport.ThisreportwasdevelopedinclosecollaborationwiththeBiofuturePlatform,aCleanEnergyMinisterialInitiative,forwhichtheIEAactsasfacilitator.PAGE|5CarbonAccountingforSustainableBiofuelsExecutivesummaryExecutivesummaryCarbonaccountingisofincreasingimportanceinbiofuelpoliciesaroundtheworld.CarbonaccountingisagenerictermthatreferstotheassessmentofGHGemissions,basedonlifecycleassessmentprinciples,andcoversthewholebiofuelsupplychainandfinaluse.GHGperformanceisexpressedascarbonintensityingrammesofCO?-equivalentpermegajouleofproducedbiofuel(gCO?-eq/MJ),whichincludesallgaseswithglobalwarmingpotential.Carbonaccountingisalreadyconsideredinpolicymaking.Roadtransport,asignificantgeneratorofcarbonemissions,isasectorwhereinthecomingfiveyears,nearly40%offueldemandwillbecoveredbypoliciesincentivisinglifecyclecarbonreductions,markingashiftfromtraditionalbiofuelblendingmandates.ThedevelopmentanduseoftransparentandinternationallyagreedGHGaccountingiskeyforthedeploymentofsustainablebiofuels.Sustainablebiofuelsplayanimportantroleindecarbonisingtransport.Theycomplementthecarbonreductionsofferedbyelectricvehiclesandotherenergyefficiencymeasuresinroadtransportandareexpectedtoplayanincreasinglong-termroleinaviationandshipping.Sustainablebiofuelscanalsoprovidebenefitsintermsofenergysecurityandjobcreation,includinginruralenvironments.However,large-scaledeploymentofbiofuels,especiallycrop-based,raisessustainabilityconcernsinsomeareas,mainlyrelatedtolanduse,netGHGemissionbalance,andunintendedimpactsonbiodiversityorfoodprices.Theseconcernscanunderminethecredibilityofbiofuelsasasustainableoption,andinsomecasesposeabarriertoinvestmentandtrade.UsingcarbonaccountingforpolicymakingpurposesisfurthercomplicatedbymixedreportsonbiofuelGHGemissionresultsandthelackofconsensusacrossmethodologies.Thepresentstudy,preparedinsupportofBrazil’sG20presidency,examinessuchcomplexitiesanddiscussesregulatoryapproachesacrossregions.Thestudyaimstoidentifymaincommonalitiesanddifferencesbetweencarbonaccountingframeworks.Itexaminesthemaincontributorstobiofuelcarbonintensity,theirimpactandtheassociatedlevelofuncertaintyinquantification.Thestudyalsoreviewspotentialinterventionstoimprovebiofuelcarbonintensityanddiscussespolicyimplicationsandpriorities.GHGaccountingishandledsimilarlyacrossmostbiofuelpolicyframeworks,exceptregardinglandusechange.Resultsfor“coreLCA”values(thatrepresentemissionsassociatedwiththesupplychain,excludingland-usePAGE|7CarbonAccountingforSustainableBiofuelsExecutivesummarychange)canvarywidelyamongsimilarbiofuelpathways,butmethodologiesarerobust,andcausesarewellunderstood.ThethreemaincausesforthewiderangesincoreLCAresultsarerelatedtoregionaldifferences,methodologicalchoices,anddatainputqualityandrepresentativeness.Whilesomeregionaldisparitiesreflectactualpracticesandlocalcontext(e.g.electricityemissionintensityorfertiliserconsumption),otherscanbesolvedbyaddressingissuesresultingfrommethodologicalchoices(suchasco-producthandlingmethodsorsystemboundarysetting)ordataquality.Impactsoflandusechangecanbeconsiderableandareamajorsourceofdisagreementacrossdifferentpolicyframeworks.Emissionscausedbydirectlandusechange(theconversionfromapreviousnon-croplandcategorytobioenergycropland)canbeobservedandquantified.However,indirectlandusechange(whenbioenergygrowthgeneratesanindirectexpansionofcroplandintohighcarbonstocklandelsewhere)dealswithinternationaleconomicdynamicsthatneedtobemodelledandcannotbemeasuredorverified.IndirectlandusechangeisthemaincauseofdisagreementaroundbiofuelsGHGaccounting,duetothehighuncertaintyofresultsandtheriskofarbitrarinesswhenattributinganindirectlandusechange(iLUC)valuetoacertainfeedstockandbiofuelpathway.Thiscallsforalternativepolicyapproaches.Biofuelcarbonintensitycanbeimprovedwithsupportivepolicyframeworksandappropriateverificationprocedures.SeveralaspectsofbiofuelproductioncanbeimprovedtoreduceGHGemissions.Forexample,inthecultivationprocess,whichisoneofthebiggestcontributorstobiofuelsupplychainemissions,severalinnovativesolutionshaverecentlystartedbeingintroduced.Theseincludeadoptingmoresustainablefarmingpracticeslikemulti-cropping,reducedtillage,andlow-emissionfertilisers.Applyingcompost,digestateorbiochar,canalsocontributetotheaccumulationofsoilcarbonstock.Emissionscanbefurtherreducedbyusingrenewableenergytosupplyprocessheatandelectricitydemand.Newtechnologiessuchascarboncapture,coupledwithbiofuelsproduction,canpotentiallyleadtonegativeGHGemissionsvalues.However,suchinterventionsarelikelytoincreasecostsandrequiremarketandpolicyframeworksthatrewardbiofuelpathwayswithhigherGHGemissionreductions,underpinnedbymeasurableandverifiablelifecycledata.Policiesneedtoadoptpragmaticapproachestofosterverifiableandperformance-basedcontinuousimprovementofsustainablebiofuelsPoliciesneedtoenablethemeasurementandverificationofdataforGHGaccounting.Toachievethis,theyshouldbeunderpinnedbymethodologyanddatabestpracticesthatsupporttheuseoftransparentandconsistentPAGE|8CarbonAccountingforSustainableBiofuelsExecutivesummarymethodologies.Relevantframeworksshouldfosterconsistentapplicationofsystemboundariesacrossdifferentbiofuelpathwaysbasedonvariousfeedstocks(includingwastesandresidues),manufacturingprocessesandcoproducts,aswellasthefossilfuelstheyreplace.Collectionanduseofdatathatcorrectlyreflectactualpracticesandregionalconditionsshouldbesystematicallyencouraged.Tosignificantlyacceleratethedeploymentofsustainablebiofuels,policiesshouldstimulateupscalingofthebesttechnologiesaswellaspromotingcontinuousimprovementbasedonup-to-dateGHGperformancemetrics.Morespecifically,governmentsshouldconsider:?EstablishingpoliciesthatrewardbetterGHGperformanceanddrivecontinuousimprovementTransparentandconsistentGHGaccounting,accompaniedbyrobustverificationprocessesasappropriate,shouldallowpoliciestodifferentiatetheperformanceofbiofuelsandpromotecontinuousGHGemissionreductions,regardlessofthefeedstockortechnology.?PrioritisingsupporttomeasureswithsignificantGHGreductionpotentialthatcanbequantifiedwithhighcertaintyandfosteringadditionalmeasureswithlesscertainquantificationwhileensuringrobustverificationsteps.WhilesomeGHGemissionreductionimpactsareeasiertoquantify,otherspresentlesscertaintywhenquantifyingGHGemissionreduction.Forthissecondgroupofmeasures,robustverificationandcertificationisrequiredtodouble-checktheireffectiveGHGemissionreduction.?Addressingindirectlandusechange(iLUC)concernsbyadoptingrisk-basedapproachesintheneartermandstrivingtodevelopgloballandusepoliciesovertime.Indirectlandusechangevaluescannotbemeasuredorverified,onlymodelled.Intheshortterm,qualitativerisk-basedapproachesofferingtheadditionalpossibilityofcomplyingwiththerequirementsoflow-iLUC-riskareagoodalternativeoption.ThesecanaddresspotentialimpactsandencourageimprovementinsteadofattemptingtoquantifyindirectemissionsintermsofgCO2-eq/MJforagivenbiofuelpathway.Inthelongerterm,policiesshouldevolvefrommodellingimpactstomanagingthecausesofindirectlandusechangebyenforcingeverywheredirectlanduseregulationsandsupportingimprovedagriculturallandmanagement.Carbonaccountingshouldbepartofabroaderportfolioofpoliciesencompassingothersustainabilitycriteriaandcompliancemethodstominimiseundesiredimpacts.Policiesshouldprotectfoodandwatersecurity,monitorandshelterbiodiversity,whiletakingothersocioeconomicfactorsintoPAGE|9CarbonAccountingforSustainableBiofuelsExecutivesummaryaccount.Biofuelpolicieswouldneedtobedesignedtobeflexibleduringperiodsoftightnessinglobalagriculturalmarkets,toavoidamplifyingthesizeordurationofagriculturalpricespikes.Enhancedstakeholderengagementandinternationalcooperationiskeyforincreasingconsensusoncarbonaccountingforsustainablebiofuels.ThisincludesfurtherstrengtheningactivecollaborationamonginternationalorganisationssuchastheInternationalCivilAviationOrganization(ICAO)andtheInternationalMaritimeOrganization(IMO),fosteringcooperationwithagriculturepolicydevelopers,includingbiofuelsandrelevantcoproductsinbroaderpoliciespromotinganintegratedcircular(bio)economy,andencouragingconsistentprotocolsandregulationsforcarbonaccountinginvoluntarycarbonmarkets.PAGE|10CarbonAccountingforSustainableBiofuelsChapter1.IntroductionChapter1.IntroductionTransportfueldemandGlobaloildemandisforecasttoplateautowardstheendofthisdecadeasenergytransitionsgatherpaceandtransportfueldemandgoesintodecline(Figure1.1).Nevertheless,ledbycontinuedexpansioninairtravelandpetrochemicalfeedstockuptake,totaloilconsumption(excludingbiofuels)isforecasttorisetonearly102millionbarrelsperday(mb/d)by2030,2.6mb/dabovethe2023level.Someeconomies,notablythePeople’sRepublicofChina(hereafter“China”)andIndia,willcontinuetoregistergrowththroughouttheforecastperiod.Bycontrast,oildemandinadvancedeconomiesmayhavealreadypeaked–aresultofthesweepingimpactofvehicleefficiencyimprovementsandelectrification.Figure1.1Worldoildemand,2017-2030110Biofuels10090Petrochemicalfeedstocks80Transport,industrialandother70IEA.CCBY4.0.Source:IEA(2024),Oil2024:AnalysisandForecastto2030.Oildemandfromthetransportsectorissettodeclinefrom2026
owingtoefficiencyimprovements,rapidhybridandelectricvehicle(EV)uptakeandincreasedbiofueluse(Figure1.2).However,thepaceofchangevariesacrosstransportmodesanddependsonthepotentialfordirectelectrification.Globalroadfueldemandisalreadyplateauingin2024,andtotaltransportdemandisclosebehind.EVsalesaresettoremainonastronggrowthtrajectory,resultinginsignificantfuelsavings.PAGE|11CarbonAccountingforSustainableBiofuelsChapter1.IntroductionAccordingtotheIEA’sGlobalEVOutlook2024,salescouldrisetoroughly17millionin2024(comparedwith14millionin2023),withnearlyoneinfivenewcarssoldgloballybeinganEV(batteryelectricorplug-inhybrid).Thisascentissettopersistinthecurrentpolicyenvironment,withtotalsalesprojectedtoreach40millionbetween2023and2030,whenalmostoneintwonewcarswillbeanEV.Thiswilldisplace5.2mb/dofgasolineanddieseldemandby2030,withfurtherreductionsof4.7mb/dfromgreaterfueleconomy.Additionally,biofuelsupplywillgrowfrom3.1to3.7mb/dinthesameperiod.Post-pandemicchangesinconsumermobilitybehaviour(relatedtoremoteandhybridworkroutines)contributeafurther1mb/doftransportsectorfuelsavings.Figure1.2Biofuel,EVandfuelefficiencyimpactsontransportsectorfossilfueldemandforecast,2023-20308060BiofuelsEfficiencysavings40200EVsavingsTransportsectorfossilfueldemand20232024202520262027202820292030IEA.CCBY4.0.Source:IEA(2024),Oil2024:AnalysisandForecastto2030.Fossilfueldemandforlong-distancetransportmodessuchasaviationandshipping,whichislessamenabletodirectsubstitution,willcontinuetogrow.However,fuelefficiencyimprovementsareprogressivelyslowingdemandgains.Forinstance,whileglobalflightactivityreturnedtopre-pandemiclevelsoverthecourseof2023,currentjetfuel/keroseneuseremainsabout5%belowthe2019value.Consumptionisnotexpectedtosurpasspre-Covidlevelsuntil2027,withstrongunderlyingdemandforairtravelcounterbalancedbymajorstridesinaircraftfuelefficiency.Similarly,efficienciesrelatedtoInternationalMaritimeOrganization(IMO)regulationsaresettograduallyerodemarinefuelconsumption.PAGE|12CarbonAccountingforSustainableBiofuelsChapter1.IntroductionTrackingbiofuelprogressBiofueldemandhasgrownsteadilyinthepastfiveyearstojustover4%ofglobaltransportfuelconsumptionin2024onanenergybasis.IntheIEA’smainforecast,basedonexistingpoliciesandfirmprojects,demandgrowthacceleratesfromthehistoricalrate,withbiofuelsmakingupmorethan5%ofglobaltransportfueldemandby2030.Infact,totalbiofuelconsumptionrises20%fromthe2023leveltonear6exajoules(EJ)(3.7mb/d)by2030.Biodieselandrenewablediesel(hydrotreatedvegetableoil[HVO]),blendedwithdiesel,accountfor40%ofthisgrowth,whileethanolblendedwithgasolinemakesup35%andbiojetfuelblendedwithjetfuelcomprisestheremaining25%.Mostnewbiofueldemandcomesfromemergingeconomies,especiallyBrazil,IndonesiaandIndia.Allthreecountrieshavebiofuelblendingtargets,risingtransportfueldemandanddomesticfeedstocks.Ethanolandbiodieseluseexpandthemostintheseregions.Althoughadvancedeconomies(includingtheEuropeanUnion[EU],theUnitedStates,CanadaandJapan)arealsostrengtheningtheirtransportpolicies,volumegrowthisconstrainedbyfactorssuchasrisingEVadoption,vehicleefficiencyimprovements,highbiofuelcostsandtechnicallimitations.Renewabledieselandbiojetfuelaretheprimarygrowthsegmentsintheseregions.Cropswerethemainsourceofbiofuelproductionin2023andareexpectedtosupport85%ofproductionby2030.Theshareofcropsusedforethanolproductionremainssteadybetween2023and2030.Bycontrast,theshareofvegetableoilsandresidueoils(suchasusedcookingoilandanimalfats)reservedforbiodiesel,renewablediesel(HVO)andbiojetfuelproductionisexpectedtoexpandconsiderablyby2030.Forinstance,residueoilsjumpfrom50%ofestimatedcollectablesupplyto80%by2030.Meanwhile,theuseofotherfeedstockssuchasagriculturalandforestryresiduesandmunicipalsolidwastemorethandoublesto2030,butaccountsforonly1%ofbiofuelproductionglobally.Usingtheseotherfeedstocksoftenrequiresnewprocessingtechnologiesthatarenotyetcommerciallyavailable,ornewagriculturalpracticesthatarenotwidelyused(e.g.growingconventionalcropsonmarginalland;intercropping;double-cropping;andotherapproachesthatcanexpandfeedstocksupplieswhileavoidingcompetitionwithfoodandfeedproduction).ItisalsopossibletoreducetheGHGemissionsofexistingcropsthroughactivitiessuchasreducingfertiliseruse(seetheImprovingGHGPerformancesection).Additionally,thereispotentialformuchquickerdeploymentgrowthifproposedpoliciesareimplemented,feedstocksourcesarediversified,andnewtechnologiesaredeployedinatimelymanner.UndertheIEAAnnouncedPledgesScenario(APS),biofueldemandis80%higherthaninthemaincaseby2030,whilebiojetPAGE|13CarbonAccountingforSustainableBiofuelsChapter1.Introductionfuelconsumptionisnearlythreetimeshigher,assumingthatBrazil,India,theUnitedKingdomandSingaporeimplementtheirplannedpoliciesandtheUnitedStatesmeetsitsSustainableAviationFuelGrandChallengetargets(Figure1.3).Fromafeedstockandtechnologyperspective,newtechnologiesandpracticesaccountfornearly15%ofbiofueldemandby2030undertheAPS,comparedwithjust1%inthemaincase.Technologiessuchasalcohol-to-jetfuelcouldprovideamarketforethanol,forwhichdemandwillhavebeenreducedbywiderEVuseandgreatervehicleefficiency.Consistentcarbonaccountingapproaches,whichwouldassignavaluetoGHGemissionreductionsallalongbiofuelsupplychainsandawardadditionalmerittotechnologieswithlowerlifecycleGHGemissionintensities,cansupportthisquickergrowth.Figure1.3Biofuelproductionbyfeedstock:Current,maincase,AnnouncedPledgesScenarioandNetZeroEmissionsby2050Scenario,2023-2030142.5X2XNewtechnologies12108Residueoils64Conventionalcrops202023Maincaseforecast2030APS2030NZE2030IEA.CCBY4.0.Notes:APS=AnnouncedPledgesScenario.NZE=NetZeroEmissionsby2050Scenario.“Conventionalcrops”referstocorn,sugarcane,soybeans,canola/rapeseed,palmoilandothercrops.“Residueoils”referstousedcookingoil,animalfats,palmoilmilleffluentandotherresidueoils.“Newtechnologiesandpractices”referstobiofuelproductionfrom(lignocellulosic)agriculturalandforestryresidues,municipalsolidwasteandoilseedsgrownonmarginallandthroughintercropping,double-croppingandotherapproachesthatdonototherwisecompetewithfoodandfeedproduction.Sources:IEA(2024),Oil2024:AnalysisandForecastto2030;IEA(2023),WorldEnergyOutlook2023.Nevertheless,thisamountofgrowthstillfallswellshortofthemorethandoublingof2023-levelproductionneededby2030toputtheworldonthepathwaytonetzeroemissionsby2050.Morethandoublingglobalproductionwouldrequirenewbiofuelpoliciesandmoreambitiousdeploymentofnewtechnologies.Inallcases,internationallyestablishedsustainabilityframeworkswouldfacilitategrowthbystimulatingtradeandreducinginvestmentriskswhilealsoencouragingandensuringGHGemissionreductions.PAGE|14CarbonAccountingforSustainableBiofuelsChapter1.IntroductionIncreasingemphasisonGHGemissionreductionpoliciesBiofueluptakeisstronglydrivenbysupportivepoliciesandregulations,basedonkeyobjectivessuchasensuringenergysecurity,reducingGHGemissionsanddiversifyingfuelsourcestomitigatetheimpactsoffossilfuelpricevolatility.Biofuelsarerecognisedfortheireffectivenessindecarbonisingtransportandotherhard-to-abatesectors.However,large-scalebiofuelusecanalsobeassociatedwithanumberofeconomic,environmentalandsocialrisks,potentiallyleadingtonegativebiodiversityimpacts,thedepletionoforganiccarboninthesoil,deforestation,objectionablelabourconditions,disputesoverlanduserightsandhigherfoodprices,amongothereffects.Itisthereforeessentialtoadoptsustainablepractices,advancetechnologicalinnovationsandimplementsupportivepoliciesforbiofuelproductionanduse.Policytoolssuchasperformance-basedsustainabilitycriteria,landuseplanning,adaptiveblendingrequirementsandotherapproachesareusedtomitigateimpactsinbiofuelproducingcountries.GHGaccountingandcarbonintensityBiofuelsustainabilitycanbequantifiedwiththehelpofGHGemissionaccountingtools,usedtocalculatethelifecycleGHGemissionsassociatedwithabiofuel’sproductionanduse.TheresultisexpressedingrammesofCO2-equivalentpermegajouleofbiofuelproduced(gCO-eq/MJ).CO-equivalentincludenotonlyCO222butalsoothergaseswithwarmingpotential,suchasmethaneorN2O.Insomepolicyframeworks,thisisalsoknownascarbonintensityorcarbonaccounting.Inallcases,carbonreferstoCO-equivalent,includingCO,methane,NOandother222greenhousegases.CommonwordingsinselectedpolicyframeworkstoaddressGHGemissionsPolicyframeworkCommonwordingEuropeanUnion,REDUnitedStates,RFSCalifornia,LCFSBrazil,RenovaBioCORSIAGHGemissionreduction/accountingGHGemissions/reductionCarbonintensityGHGemissions,carbonintensityLifecycleemissionsvalues,GHG,carbonemissionsGHGemissions,GHGintensityIMOPAGE|15CarbonAccountingforSustainableBiofuelsChapter2.PolicyenvironmentChapter2.PolicyenvironmentRegulatoryapproachesBiofuelproductionanduseisdrivenbysupportivepoliciesandregulations,foundedonobjectivesrelatedtoreducingGHGemissions,diversifyingfuelsourcestomitigatetheimpactsoffossilfuelpricevolatility,andimprovingenergysecurity.Figure2.1mapsselectedglobalbiofuelpolicyframeworksand
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年商丘道路運(yùn)輸從業(yè)資格證
- 代加工用合同范本
- 鄉(xiāng)鎮(zhèn)開(kāi)店送貨合同范本
- 分兩期買車合同范例
- 公路制式版合同范本
- 農(nóng)機(jī)抵押貨款合同范本
- 農(nóng)業(yè)搭棚工程合同范例
- 借貸型買賣合同范本
- 內(nèi)部法律顧問(wèn)合同范本
- 單位門鎖維修合同范本
- GB/T 3498-2008潤(rùn)滑脂寬溫度范圍滴點(diǎn)測(cè)定法
- GB/T 31586.2-2015防護(hù)涂料體系對(duì)鋼結(jié)構(gòu)的防腐蝕保護(hù)涂層附著力/內(nèi)聚力(破壞強(qiáng)度)的評(píng)定和驗(yàn)收準(zhǔn)則第2部分:劃格試驗(yàn)和劃叉試驗(yàn)
- GB/T 15175-2012固體激光器主要參數(shù)測(cè)量方法
- 建筑工程施工進(jìn)度計(jì)劃網(wǎng)絡(luò)圖和橫道圖
- HP工作站BIOS詳解參考模板
- 員工培訓(xùn)、考試、積分記錄表
- 微專題:地理時(shí)空“尺度觀”思想課件
- 大學(xué)普通物理-習(xí)題答案(程守洙-江之勇主編-第六版)課件
- 風(fēng)冷熱泵主機(jī)改造-模塊機(jī)匯總
- 烏司他丁課件
- 《工程化學(xué)》全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論