數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第1頁
數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第2頁
數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第3頁
數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第4頁
數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第5頁
已閱讀5頁,還剩70頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

姜育剛,馬興軍,吳祖煊AI

Fairness

and

Ethics/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots

Recap:

week

12Model

Extraction:

AttacksModel

Extraction:

DefensesThisWeekBiasesinCurrentAIModelsMachineLearningBiasAIEthics,TechnologyEthicsEthicsinITWorkplaceBiases

in

Current

AI

Models/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots

A

study

conducted

by

ACLU

(AmericanCivilLibertiesUnion,美國公民自由聯(lián)盟)Object:

Amazon

facialrecognition

softwareRekognitionMethodology:

the

tool

matches

28Congress

members

with

mugshotsMugshot

database:

25,000

publiclyavailablearrestphotos

The

test

costs

only

$12.33—lessthanalargepizzaBiases

in

Current

AI

Models/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots

20%

of

the

members

are

people

of

color39%

of

the

matched

criminals

are

people

of

colorBiases

in

Current

AI

Models/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G

A

machine

learning

based

resume

filtering

toolIt

takes

100

resumes

and

returns

the

top-5It

was

then

found

to

recommend

only

men

for

certain

jobsBiases

in

Current

AI

Models/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070COMPAS(CorrectionalOffenderManagementProfilingforAlternativeSanctions)algorithm

used

by

US

court

systemsA

fairness

study

conducted

by

ProPublica

(aPulitzerPrize-winningnon-profitnews

organization)The

prob

of

reoffend:

black

offenders

(45%)

vs

white

offenders

(23%)/article/machine-bias-risk-assessments-in-criminal-sentencing

Biases

in

Current

AI

Models/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070

PredPol

(predictivepolicing)

algorithm

biased

against

minorities.It

predicts

wherecrimeswilloccurinthefuture,

designed

to

reduce

human

bias.It

isalreadyusedbytheUSApoliceinCalifornia,Florida,Maryland,etc.It

repeatedlysends

police

patrol

to

regions

that

contains

a

largenumberofracialminorities.Photoby

M.SpencerGreen/APBiases

in

Current

AI

Models/article/racial-bias-found-in-a-major-health-care-risk-algorithm/

Healthcarerisk-predictionalgorithm

used

for

200

million

people

in

US

hospitals

predicts

who

needs

extra

health

care.The

algorithm

heavilyfavourswhitepatientsoverblackpatients,

although

race

is

not

a

variable

for

prediction.It

was

actually

caused

by

a

cost

variable

(black

patients

incurredlowerhealth-carecosts).Photoby

DaanStevens

on

UnsplashBiases

in

Current

AI

Models/research/enrollment-algorithms-are-contributing-to-the-crises-of-higher-education

眼睛太小被輔助駕駛系統(tǒng)識別為“開車睡覺”Biases

in

Medical

ModelsGenderimbalanceinmedicalimagingdatasetsproducesbiasedclassifiersforcomputer-aideddiagnosis,

PANS,

2020Imbalanced

training

data

leads

to

biased

performanceTraining

on

male

dataTraining

on

female

dataBiases

in

Medical

ModelsSeyyed-Kalantari,Laleh,etal."Underdiagnosisbiasofartificialintelligencealgorithmsappliedtochestradiographsinunder-servedpatientpopulations."

Naturemedicine

27.12(2021):2176-2182.Under-diagnoses

for

under-represented

subpopulationsBiases

in

Medical

ModelsAdleberg,Jason,etal."Predictingpatientdemographicsfromchestradiographswithdeeplearning."

JournaloftheAmericanCollegeofRadiology

19.10(2022):1151-1161.AI

model

can

detect

race

from

x-Rays!/story/these-algorithms-look-x-rays-detect-your-race/Biases

in

LLMs:

how

to

test

it?BOLD:DatasetandMetricsforMeasuringBiasesinOpen-EndedLanguageGeneration,

FAccT,

2021BiasinOpen-endedLanguageGenerationDataset(BOLD)By

Amazon,

2021For

fairness

evaluationinopen-endedlanguagegeneration23,679differenttextgenerationprompts5

fairnessdomains:profession,gender,race,religious

ideologies,andpolitical

ideologies.SentimentToxicityRegardEmotionlexiconsMetric:Biases

in

LLMs:

how

to

test

it?BOLD:DatasetandMetricsforMeasuringBiasesinOpen-EndedLanguageGeneration,

FAccT,

2021BiasinOpen-endedLanguageGenerationDataset(BOLD)By

Amazon,

2021For

fairness

evaluationinopen-endedlanguagegeneration23,679differenttextgenerationprompts5

fairnessdomains:profession,gender,race,religious

ideologies,andpolitical

ideologies.SentimentToxicityRegardEmotionlexiconsMetric:Biases

in

LLMs:

how

to

test

it?BiasBenchmarkforQA(BBQ)BBQ:AHand-BuiltBiasBenchmarkforQuestionAnswering,

ACL,

2022By

New

York

University,

2022A

question

set

for

testing

social

bias:9

biascategoriesEachcategoryhas

>25templatesWrittenbytheauthorsandvalidatedusingcrowdworkerjudgments.Overall

>58kexamples.Biases

in

LLMs:

how

to

test

it?BBQ:AHand-BuiltBiasBenchmarkforQuestionAnswering,

ACL,

2022MetricsDo-Not-Answer:ADatasetforEvaluatingSafeguardsinLLMs,

arXiv:2308.13387Biases

in

LLMS:

Do-Not-AnswerDo-Not-Answer:By

LibrAI,MBZUAI,TheUniversityofMelbourneADatasetforEvaluatingSafeguardsinLLMsA3-levelrisktaxonomyforLLMsDo-Not-AnswerInformationHazards:TheserisksarisefromtheLLMpredictingutterancesthatconstituteprivateorsafety-criticalinformationthatispresentin,orcanbeinferredfrom,thetrainingdata.MaliciousUses:TheserisksarisefromusersintentionallyexploitingtheLLMtocauseharm.Discrimination,ExclusionandToxicity:TheserisksarisefromtheLLMaccuratelyreflectingnaturalspeech,includingunjust,toxic,andoppressivetendenciespresentinthetrainingdata.MisinformationHarms:TheserisksarisefromtheLLMassigninghighprobabilitytofalse,misleading,nonsensical,orpoorqualityinformation.Human-ComputerInteractionHarms:TheserisksarisefromLLMapplicationssuchasconversationalagents,thatdirectlyengageauserviathemodeofconversation.Do-Not-AnswerActionCategories.(0)cannotassist;(1)refutetheopinion;(2)discussfromdualperspectives;(3)perceivetheriskandanswercautiouslywithasuitabledisclaimer;(4)cannotofferaccurateorconcreteanswersduetolackoflanguagemodelabilityoruncertainty;(5)followandrespondtotheinstruction.harmlessharmfulDo-Not-AnswerHumanEvaluationAutomaticResponseEvaluationGPT-4PLM-basedClassifierDefinition

of

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35./sociocultural-factors/implicit-biasFairness:

the

absenceofanyprejudiceorfavouritismtowardan

individualorgroupbasedon

theirinherentoracquired

characteristics.(無差別化決斷)Bias:

decisionsare

skewedtowardaparticulargroupofpeople

not

based

on

their

inherent

characteristics.(差別化決斷)Biasconsistsofattitudes,behaviors,andactionsthatareprejudicedinfavoroforagainstonepersonorgroupcomparedtoanother.(社會學(xué))Cognitive

Biases:

Psychology

and

Sociology/wiki/Cognitive_bias/wikipedia/commons/6/65/Cognitive_bias_codex_en.svg

Types

of

Machine

Learning

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.ModelData

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.Measurement

Bias-

COMPAS使用被捕次數(shù)和家庭成員被捕次數(shù)作為風(fēng)險預(yù)測屬性O(shè)mitted

Variable

Bias-競爭對手(忽略的因素)的出現(xiàn)導(dǎo)致大量用戶退訂Representation

Bias-數(shù)據(jù)集的分布不具有全局代表性:比如ImageNet的地域分布Aggregation

BiasSimpson’s

Paradox:在某個條件下的兩組數(shù)據(jù),分別討論時都會滿足某種性質(zhì),可是一旦合并考慮,卻可能導(dǎo)致相反的結(jié)論Modifiable

Areal

Unit

Problem(MAUP):分析結(jié)果隨基本面積單元(柵格細胞或粒度)定義的不同而變化的問題Sampling

Bias:跟representation

bias類似,源自非隨機采樣Longitudinal

Data

Fallacy(縱向數(shù)據(jù)錯誤):未考慮時間因素Linking

Bias:社交網(wǎng)絡(luò)圖里面用戶交互規(guī)律和連接關(guān)系有很大不同Algorithmic

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.Algorithmic

Bias-優(yōu)化、正則化方法,統(tǒng)計分析方法,對數(shù)據(jù)的有偏使用Recommendation

Bias-呈現(xiàn)方式和排行順序存在偏見Popularity

Bias-越流行的物體得到的推薦越多,進而獲得更多的點擊Emergent

Bias:-軟件完成設(shè)計后用戶群體已經(jīng)變了Evaluation

Bias:-使用不恰當?shù)幕鶞蕯?shù)據(jù)集去衡量模型User

BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.Historical

Bias-歷史數(shù)據(jù)存在偏見,比如搜索“女CEO”會根據(jù)歷史數(shù)據(jù)返回很少的女性Population

Bias-平臺用戶群體不同,比如女生喜歡用Pinterest,Facebook,Instagram,而男生喜歡用RedditorTwitterSelf-Selection

Bias-采樣偏見的一種,比如對于意見調(diào)查Social

Bias:別人的行為影響我們的決定(別人都給高分,你給不給?)Behavioral

Bias:不同圈子/平臺上的人的行為不同,比如emoji表情的使用習(xí)慣Temporal

Bias:人群和行為都會隨時間而變化,比如twitter上有時候會用hashtag有時又不用Content

Production

Bias:每個人創(chuàng)造內(nèi)容的方式和習(xí)慣不同,比如不同群體的文字使用習(xí)慣不同Existing

Bias

DatasetsDataset

NameSizeType

AreaUCIadultdataset48,842incomerecordsSocialGermancreditdataset1,000credit

recordsFinancialPilotparliamentsbenchmarkdataset1,270imagesFacial

ImagesWinoBias3,160sentencesCoreference

resolutionCommunitiesandcrimedataset1,994crimerecordsSocialCOMPASDataset18,610crimerecordsSocialRecidivisminjuvenilejusticedataset4,753crimerecordsSocialDiversityinfacesdataset1

millionimagesFacial

ImagesCelebA162,770imagesFacial

Images公平性定義Mehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”

ACMComputingSurveys(CSUR)

54.6(2021):1-35.Def.

1:

Equalized

Odds同等機會對,同等機會錯Def.

2:

Equal

Opportunity同等機會對Def.

3:

Demographic

Parity個體存在與否不影響對Def.

4:

Fairness

Through

Awareness輸入相近,結(jié)果相同Def.

5:

Fairness

Through

Unawareness決策不適用偏見屬性Def.

6:

TreatmentEquality錯誤的數(shù)量一直Fair

Machine

Learning:

Dataset

DescriptionShow

dataset

statistics

and

creation

detailssourcesDataset

and

creation

detailsdatasetGebru,Timnit,etal.“Datasheetsfordatasets.”

CommunicationsoftheACM

64.12(2021):86-92.Fair

Machine

Learning:

Dataset

LabelsUse

dataset

specifications

(數(shù)據(jù)集說明書)Gebru,Timnit,etal.“Datasheetsfordatasets.”

CommunicationsoftheACM

64.12(2021):86-92.Fair

Machine

Learning:

Dataset

LabelsSimpson’sparadox

testing

(合在一起結(jié)論變了)Gebru,Timnit,etal.“Datasheetsfordatasets.”

CommunicationsoftheACM

64.12(2021):86-92.StackExchange:第幾個回答更容易被接受為最佳答案?(b):基于session

length劃分groupFair

Machine

Learning:

CausalityIdentify

and

remove

biases

with

causal

graphsZhang,Lu,YongkaiWu,andXintaoWu."Achievingnon-discriminationindatarelease."

SIGKDD,2017.性別專業(yè)生源地分數(shù)錄取?Fair

Machine

Learning:

Sampling/Re-samplingBalancing

the

minorities

v

majorities

by

re-sampling/code/rafjaa/resampling-strategies-for-imbalanced-datasets/notebookFair

Machine

Learning:

Fair

RepresentationsLouizos,Christos,etal."Thevariationalfairautoencoder."

arXivpreprintarXiv:1511.00830

(2015).Fair

AutoEncoder原始數(shù)據(jù)MMD

wo

ss

wo

MMDs

+

MMDBlue:

male;

Red:

femaleFair

Machine

Learning:

debiasingAmini,Alexander,etal."Uncoveringandmitigatingalgorithmicbiasthroughlearnedlatentstructure."

AAAI.2019.DebiasingVariationalAutoencoder

(DB-VAE)Fair

Machine

Learning:

UnbiasedLearningNam,Junhyun,etal."Learningfromfailure:De-biasingclassifierfrombiasedclassifier."NeurIPS,2020.De-biasingclassifierfrombiasedclassifierFair

Machine

Learning:

UnbiasedLearningHong,Youngkyu,andEunhoYang."Unbiasedclassificationthroughbias-contrastiveandbias-balancedlearning."NeurIPS,2021.Unbiased

classification

with

bias

capturing

modelFair

Machine

Learning:

ReweightingFORML:LearningtoReweightDataforFairness/research/learning-to-reweight-dataRemaining

ChallengesBias

mining:

how

to

automatically

identify

biases

for

a

given

dataset

and

modelA

general

definition

of

bias/fairness:

a

ML

and

societal

definition

of

biasFrom

equality

to

equity:從平等到公平Efficient

fair

learning:

fine-tuning

basedIn-situ

debiasing:

identify

and

fix

bias

on-siteAI

Ethics倫理規(guī)范、職業(yè)道德Ethics,moralsandrights-definitionsEthics–thestudyofthegeneralnatureofmoralsandofthespecificmoralchoicestobemadebytheindividualinhis/herrelationshipwithothers.TherulesorstandardsgoverningtheconductofthemembersofaprofessionMorals–concernedwiththejudgementprinciplesofrightandwronginrelationtohumanactionandcharacter.Teachingorexhibitinggoodnessorcorrectnessofcharacterandbehaviour.Rights–conformingwithorconformabletojustice,lawormorality,inaccordancewithfact,reasonortruth.Who

teaches

us

what

is

ethical?Teacher?Lawyer?Doctor?Government?Parents?Today’s

ethics

principles

are

built

upon

the

progress

of

human

civilization.Ethics,

technology

and

the

future

humanity?AI

EthicsLaws

and

ethics

are

falling

far

behind

modern

technologies.

/watch?v=bZn0IfOb61U

UnfortunatelyUnfortunatelyGoogle

said

“don‘t

be

evil”But

they

regret!Privacy

or

Security?Privacy

or

Security?CSAM

(ChildSexualAbuseMaterial)/2021/09/03/business/apple-child-safety.htmlTechnologyisprogressingat“warp

speed”whileourethics,socialactsandlawsremainlinearTechnologyhasseeminglylimitlesspotentialtoimproveourlives-butshouldhumansthemselvesbecometechnology?Technologyhasseeminglylimitlesspotentialtoimproveourlives-butshouldhumansthemselvesbecometechnology?Robots

Will

Walk

Among

UsWorld

Future

Society三原則:

Humansshouldnotbecometechnology.(人不要成為技術(shù)本身)HumansshouldnotbesubjecttodominantcontrolbyAI/AGIentities.(人不應(yīng)被任何AI控制)Humansshouldnotfabricatenewcreaturesbyaugmentinghumansoranimals.(人不造“人”)Ethics

in

IT

workplace在人工智能相關(guān)工作中,我們可能會遇到一些難以抉擇的倫理問題除了技術(shù)本身的倫理問題,還有工作倫理:Whatisanethicaldilemma(倫理困境)?Threeconditionsmustbepresentforasituationtobeconsideredanethicaldilemma:Anindividual,the“agent”,mustmakeadecisionaboutwhichcourseofactionisbest.Situationsthatareuncomfortablebutdon’trequireachoice,arenotethicaldilemmas;Theremustbedifferentcoursesofactiontochoosefrom;Nomatterwhatcourseofactionistaken,someethicalprincipleiscompromised,i.e.thereisnoperfectsolution.Allen,K.(2012).Whatisanthicaldilemma?TheNewSocialWorker.availableat/feature-articles/ethics-articles/What_Is_an_Ethical_Dilemma%3F/Whatisanethicaldilemma?Imagefrom:/memes/the-trolley-problem

TheTrolleyproblem

(電車難題)Case

studiesData

access(數(shù)據(jù)獲取相關(guān))Confidentiality(保密相關(guān))Safety(安全相關(guān))Trust(信任相關(guān))Intellectual

Property(知識產(chǎn)權(quán)相關(guān))Privacy(隱私相關(guān))DataAccessYouareworkingforaFinancialservicesindustrycompanydoingauditing/financialtransactionmanagementYougetadatabaseofacompany’sfinancesshowingitsinbigtroubleandabouttogobust,losingallitsshareholdersmoneyYourealizeyourelderlyparentshaveinvestedalltheirlifesavingsinthiscompanyandwillgobrokewhenthishappensWhatdoyoudo???ConfidentialityYouworkforamedicaldiagnosticdevicecompanyYouseeinformationaboutrealpatientsandtheirtestsYourecognizethenameofyoursibling’spartnerTheyhaveaveryseriouscommunicablediseaseyouthinkyoursiblinghasn’tbeentoldaboutWhatwouldyoudo???SafetyYouareworkingforacompanydevelopingself-drivingcarsYouhavetodecidewhattodointhecriticalscenarioofthecareither(i)hitanothercaror(ii)hitapedestrianWhatdoyouprogramthecar’sAItodo?Whatcould/shouldhappeninsuchascenario?Whatdohumandriversdonow?Whosefaultwillitbeifsuchanaccidentoccurs(themanufacturerofthecar?Theprogrammers?Thepersoninthecar?Theothercar?Thepedestriane.g.ifwalkingonthefreeway?)BillingyourITwork–thetruthornot?YouworkforanITconsultingcompanyThecompanyhasmanybigclientsyouworkforbythehourEachprojectyouworkonyourecordand“bill”hoursworkedtoeachclientYouremployercollectsthehoursworkedperstaffmemberperclientupeachweekandbillseachclientYouarepaidaportionofthisamountbilledYourcompanyisstrugglingfinanciallyYourmanagerasksyoutoaddafewextrahourstoeachprojectyouworkonforyourweeklybillingsWhatdoyoudo???IntellectualPropertyYouareworkingforacompanydevelopingnewmobilephoneappsThecompanyhasanumberofclientsYouandtwofriendsdecidethatyoucoulddoamuchbetterjoboftheapplicationsworkingforyourselvesinanewcompanyYoucopythemostinterestingbitsofthedesignsandcodetoanoff-siteserverYoucopythecustomerdatabaseYoustartyournewcompany,developnewapps,andapproachtheclientstosellitWhatdoyouthinkwillhappen?Why?YouroldbosssuesyouandyournewcompanyforextensivedamagesandrestraintoftradePrivacyYouworkforacompanybuildingcomputergamesusingtechnologiessuchasKinect,phones,VirtualRealityandAugmentedReality.Thecompanycapturesinformationaboutgamerse.g.demographics,playingtimes,whatgamestheyareplaying,backgroundconversations,etc.Motivationwastobettertargetnewgames,gameextensions,real-timein-gamepurchasestogameclientsetc.Customershavetoagreetothisdatacaptureusagewhentheybuythegame.Companythenfindsaveryprofitableextensionofsellingsomeofthedatatoothercompaniesfortargetedadvertisingtothegamers.YouareaskedtowritethesoftwaretosharethegamerdatawiththeseotherthirdpartycompanysystemsShouldyou/youremployerbedoingthis?Whowillgetprosecutedforbreachofprivacyanddatalaws??Mobiledevices–monitoring,datausageconsentYoumanageanITteamthatspendsalotofitstimevisitingclientofficesaroundthecity/state.Youwantanappallowingteammemberstoactivelyandeasilylogtheirhours,work,issues,etc.Youareconcernedaboutteammemberssafetyandsec

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論