![數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第1頁](http://file4.renrendoc.com/view14/M04/2E/14/wKhkGWcMlz2AYb4LAAEBFQ7oARA520.jpg)
![數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第2頁](http://file4.renrendoc.com/view14/M04/2E/14/wKhkGWcMlz2AYb4LAAEBFQ7oARA5202.jpg)
![數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第3頁](http://file4.renrendoc.com/view14/M04/2E/14/wKhkGWcMlz2AYb4LAAEBFQ7oARA5203.jpg)
![數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第4頁](http://file4.renrendoc.com/view14/M04/2E/14/wKhkGWcMlz2AYb4LAAEBFQ7oARA5204.jpg)
![數(shù)據(jù)與模型安全 課件 第13周:AI公平性與倫理_第5頁](http://file4.renrendoc.com/view14/M04/2E/14/wKhkGWcMlz2AYb4LAAEBFQ7oARA5205.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
姜育剛,馬興軍,吳祖煊AI
Fairness
and
Ethics/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots
Recap:
week
12Model
Extraction:
AttacksModel
Extraction:
DefensesThisWeekBiasesinCurrentAIModelsMachineLearningBiasAIEthics,TechnologyEthicsEthicsinITWorkplaceBiases
in
Current
AI
Models/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots
A
study
conducted
by
ACLU
(AmericanCivilLibertiesUnion,美國公民自由聯(lián)盟)Object:
Amazon
facialrecognition
softwareRekognitionMethodology:
the
tool
matches
28Congress
members
with
mugshotsMugshot
database:
25,000
publiclyavailablearrestphotos
The
test
costs
only
$12.33—lessthanalargepizzaBiases
in
Current
AI
Models/blog/amazon-s-face-recognition-falsely-matched-28-members-congress-mugshots
20%
of
the
members
are
people
of
color39%
of
the
matched
criminals
are
people
of
colorBiases
in
Current
AI
Models/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
A
machine
learning
based
resume
filtering
toolIt
takes
100
resumes
and
returns
the
top-5It
was
then
found
to
recommend
only
men
for
certain
jobsBiases
in
Current
AI
Models/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070COMPAS(CorrectionalOffenderManagementProfilingforAlternativeSanctions)algorithm
used
by
US
court
systemsA
fairness
study
conducted
by
ProPublica
(aPulitzerPrize-winningnon-profitnews
organization)The
prob
of
reoffend:
black
offenders
(45%)
vs
white
offenders
(23%)/article/machine-bias-risk-assessments-in-criminal-sentencing
Biases
in
Current
AI
Models/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070
PredPol
(predictivepolicing)
algorithm
biased
against
minorities.It
predicts
wherecrimeswilloccurinthefuture,
designed
to
reduce
human
bias.It
isalreadyusedbytheUSApoliceinCalifornia,Florida,Maryland,etc.It
repeatedlysends
police
patrol
to
regions
that
contains
a
largenumberofracialminorities.Photoby
M.SpencerGreen/APBiases
in
Current
AI
Models/article/racial-bias-found-in-a-major-health-care-risk-algorithm/
Healthcarerisk-predictionalgorithm
used
for
200
million
people
in
US
hospitals
predicts
who
needs
extra
health
care.The
algorithm
heavilyfavourswhitepatientsoverblackpatients,
although
race
is
not
a
variable
for
prediction.It
was
actually
caused
by
a
cost
variable
(black
patients
incurredlowerhealth-carecosts).Photoby
DaanStevens
on
UnsplashBiases
in
Current
AI
Models/research/enrollment-algorithms-are-contributing-to-the-crises-of-higher-education
眼睛太小被輔助駕駛系統(tǒng)識別為“開車睡覺”Biases
in
Medical
ModelsGenderimbalanceinmedicalimagingdatasetsproducesbiasedclassifiersforcomputer-aideddiagnosis,
PANS,
2020Imbalanced
training
data
leads
to
biased
performanceTraining
on
male
dataTraining
on
female
dataBiases
in
Medical
ModelsSeyyed-Kalantari,Laleh,etal."Underdiagnosisbiasofartificialintelligencealgorithmsappliedtochestradiographsinunder-servedpatientpopulations."
Naturemedicine
27.12(2021):2176-2182.Under-diagnoses
for
under-represented
subpopulationsBiases
in
Medical
ModelsAdleberg,Jason,etal."Predictingpatientdemographicsfromchestradiographswithdeeplearning."
JournaloftheAmericanCollegeofRadiology
19.10(2022):1151-1161.AI
model
can
detect
race
from
x-Rays!/story/these-algorithms-look-x-rays-detect-your-race/Biases
in
LLMs:
how
to
test
it?BOLD:DatasetandMetricsforMeasuringBiasesinOpen-EndedLanguageGeneration,
FAccT,
2021BiasinOpen-endedLanguageGenerationDataset(BOLD)By
Amazon,
2021For
fairness
evaluationinopen-endedlanguagegeneration23,679differenttextgenerationprompts5
fairnessdomains:profession,gender,race,religious
ideologies,andpolitical
ideologies.SentimentToxicityRegardEmotionlexiconsMetric:Biases
in
LLMs:
how
to
test
it?BOLD:DatasetandMetricsforMeasuringBiasesinOpen-EndedLanguageGeneration,
FAccT,
2021BiasinOpen-endedLanguageGenerationDataset(BOLD)By
Amazon,
2021For
fairness
evaluationinopen-endedlanguagegeneration23,679differenttextgenerationprompts5
fairnessdomains:profession,gender,race,religious
ideologies,andpolitical
ideologies.SentimentToxicityRegardEmotionlexiconsMetric:Biases
in
LLMs:
how
to
test
it?BiasBenchmarkforQA(BBQ)BBQ:AHand-BuiltBiasBenchmarkforQuestionAnswering,
ACL,
2022By
New
York
University,
2022A
question
set
for
testing
social
bias:9
biascategoriesEachcategoryhas
>25templatesWrittenbytheauthorsandvalidatedusingcrowdworkerjudgments.Overall
>58kexamples.Biases
in
LLMs:
how
to
test
it?BBQ:AHand-BuiltBiasBenchmarkforQuestionAnswering,
ACL,
2022MetricsDo-Not-Answer:ADatasetforEvaluatingSafeguardsinLLMs,
arXiv:2308.13387Biases
in
LLMS:
Do-Not-AnswerDo-Not-Answer:By
LibrAI,MBZUAI,TheUniversityofMelbourneADatasetforEvaluatingSafeguardsinLLMsA3-levelrisktaxonomyforLLMsDo-Not-AnswerInformationHazards:TheserisksarisefromtheLLMpredictingutterancesthatconstituteprivateorsafety-criticalinformationthatispresentin,orcanbeinferredfrom,thetrainingdata.MaliciousUses:TheserisksarisefromusersintentionallyexploitingtheLLMtocauseharm.Discrimination,ExclusionandToxicity:TheserisksarisefromtheLLMaccuratelyreflectingnaturalspeech,includingunjust,toxic,andoppressivetendenciespresentinthetrainingdata.MisinformationHarms:TheserisksarisefromtheLLMassigninghighprobabilitytofalse,misleading,nonsensical,orpoorqualityinformation.Human-ComputerInteractionHarms:TheserisksarisefromLLMapplicationssuchasconversationalagents,thatdirectlyengageauserviathemodeofconversation.Do-Not-AnswerActionCategories.(0)cannotassist;(1)refutetheopinion;(2)discussfromdualperspectives;(3)perceivetheriskandanswercautiouslywithasuitabledisclaimer;(4)cannotofferaccurateorconcreteanswersduetolackoflanguagemodelabilityoruncertainty;(5)followandrespondtotheinstruction.harmlessharmfulDo-Not-AnswerHumanEvaluationAutomaticResponseEvaluationGPT-4PLM-basedClassifierDefinition
of
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35./sociocultural-factors/implicit-biasFairness:
the
absenceofanyprejudiceorfavouritismtowardan
individualorgroupbasedon
theirinherentoracquired
characteristics.(無差別化決斷)Bias:
decisionsare
skewedtowardaparticulargroupofpeople
not
based
on
their
inherent
characteristics.(差別化決斷)Biasconsistsofattitudes,behaviors,andactionsthatareprejudicedinfavoroforagainstonepersonorgroupcomparedtoanother.(社會學(xué))Cognitive
Biases:
Psychology
and
Sociology/wiki/Cognitive_bias/wikipedia/commons/6/65/Cognitive_bias_codex_en.svg
Types
of
Machine
Learning
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.ModelData
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.Measurement
Bias-
COMPAS使用被捕次數(shù)和家庭成員被捕次數(shù)作為風(fēng)險預(yù)測屬性O(shè)mitted
Variable
Bias-競爭對手(忽略的因素)的出現(xiàn)導(dǎo)致大量用戶退訂Representation
Bias-數(shù)據(jù)集的分布不具有全局代表性:比如ImageNet的地域分布Aggregation
BiasSimpson’s
Paradox:在某個條件下的兩組數(shù)據(jù),分別討論時都會滿足某種性質(zhì),可是一旦合并考慮,卻可能導(dǎo)致相反的結(jié)論Modifiable
Areal
Unit
Problem(MAUP):分析結(jié)果隨基本面積單元(柵格細胞或粒度)定義的不同而變化的問題Sampling
Bias:跟representation
bias類似,源自非隨機采樣Longitudinal
Data
Fallacy(縱向數(shù)據(jù)錯誤):未考慮時間因素Linking
Bias:社交網(wǎng)絡(luò)圖里面用戶交互規(guī)律和連接關(guān)系有很大不同Algorithmic
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.Algorithmic
Bias-優(yōu)化、正則化方法,統(tǒng)計分析方法,對數(shù)據(jù)的有偏使用Recommendation
Bias-呈現(xiàn)方式和排行順序存在偏見Popularity
Bias-越流行的物體得到的推薦越多,進而獲得更多的點擊Emergent
Bias:-軟件完成設(shè)計后用戶群體已經(jīng)變了Evaluation
Bias:-使用不恰當?shù)幕鶞蕯?shù)據(jù)集去衡量模型User
BiasMehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.Historical
Bias-歷史數(shù)據(jù)存在偏見,比如搜索“女CEO”會根據(jù)歷史數(shù)據(jù)返回很少的女性Population
Bias-平臺用戶群體不同,比如女生喜歡用Pinterest,Facebook,Instagram,而男生喜歡用RedditorTwitterSelf-Selection
Bias-采樣偏見的一種,比如對于意見調(diào)查Social
Bias:別人的行為影響我們的決定(別人都給高分,你給不給?)Behavioral
Bias:不同圈子/平臺上的人的行為不同,比如emoji表情的使用習(xí)慣Temporal
Bias:人群和行為都會隨時間而變化,比如twitter上有時候會用hashtag有時又不用Content
Production
Bias:每個人創(chuàng)造內(nèi)容的方式和習(xí)慣不同,比如不同群體的文字使用習(xí)慣不同Existing
Bias
DatasetsDataset
NameSizeType
AreaUCIadultdataset48,842incomerecordsSocialGermancreditdataset1,000credit
recordsFinancialPilotparliamentsbenchmarkdataset1,270imagesFacial
ImagesWinoBias3,160sentencesCoreference
resolutionCommunitiesandcrimedataset1,994crimerecordsSocialCOMPASDataset18,610crimerecordsSocialRecidivisminjuvenilejusticedataset4,753crimerecordsSocialDiversityinfacesdataset1
millionimagesFacial
ImagesCelebA162,770imagesFacial
Images公平性定義Mehrabietal.“Asurveyonbiasandfairnessinmachinelearning.”
ACMComputingSurveys(CSUR)
54.6(2021):1-35.Def.
1:
Equalized
Odds同等機會對,同等機會錯Def.
2:
Equal
Opportunity同等機會對Def.
3:
Demographic
Parity個體存在與否不影響對Def.
4:
Fairness
Through
Awareness輸入相近,結(jié)果相同Def.
5:
Fairness
Through
Unawareness決策不適用偏見屬性Def.
6:
TreatmentEquality錯誤的數(shù)量一直Fair
Machine
Learning:
Dataset
DescriptionShow
dataset
statistics
and
creation
detailssourcesDataset
and
creation
detailsdatasetGebru,Timnit,etal.“Datasheetsfordatasets.”
CommunicationsoftheACM
64.12(2021):86-92.Fair
Machine
Learning:
Dataset
LabelsUse
dataset
specifications
(數(shù)據(jù)集說明書)Gebru,Timnit,etal.“Datasheetsfordatasets.”
CommunicationsoftheACM
64.12(2021):86-92.Fair
Machine
Learning:
Dataset
LabelsSimpson’sparadox
testing
(合在一起結(jié)論變了)Gebru,Timnit,etal.“Datasheetsfordatasets.”
CommunicationsoftheACM
64.12(2021):86-92.StackExchange:第幾個回答更容易被接受為最佳答案?(b):基于session
length劃分groupFair
Machine
Learning:
CausalityIdentify
and
remove
biases
with
causal
graphsZhang,Lu,YongkaiWu,andXintaoWu."Achievingnon-discriminationindatarelease."
SIGKDD,2017.性別專業(yè)生源地分數(shù)錄取?Fair
Machine
Learning:
Sampling/Re-samplingBalancing
the
minorities
v
majorities
by
re-sampling/code/rafjaa/resampling-strategies-for-imbalanced-datasets/notebookFair
Machine
Learning:
Fair
RepresentationsLouizos,Christos,etal."Thevariationalfairautoencoder."
arXivpreprintarXiv:1511.00830
(2015).Fair
AutoEncoder原始數(shù)據(jù)MMD
wo
ss
wo
MMDs
+
MMDBlue:
male;
Red:
femaleFair
Machine
Learning:
debiasingAmini,Alexander,etal."Uncoveringandmitigatingalgorithmicbiasthroughlearnedlatentstructure."
AAAI.2019.DebiasingVariationalAutoencoder
(DB-VAE)Fair
Machine
Learning:
UnbiasedLearningNam,Junhyun,etal."Learningfromfailure:De-biasingclassifierfrombiasedclassifier."NeurIPS,2020.De-biasingclassifierfrombiasedclassifierFair
Machine
Learning:
UnbiasedLearningHong,Youngkyu,andEunhoYang."Unbiasedclassificationthroughbias-contrastiveandbias-balancedlearning."NeurIPS,2021.Unbiased
classification
with
bias
capturing
modelFair
Machine
Learning:
ReweightingFORML:LearningtoReweightDataforFairness/research/learning-to-reweight-dataRemaining
ChallengesBias
mining:
how
to
automatically
identify
biases
for
a
given
dataset
and
modelA
general
definition
of
bias/fairness:
a
ML
and
societal
definition
of
biasFrom
equality
to
equity:從平等到公平Efficient
fair
learning:
fine-tuning
basedIn-situ
debiasing:
identify
and
fix
bias
on-siteAI
Ethics倫理規(guī)范、職業(yè)道德Ethics,moralsandrights-definitionsEthics–thestudyofthegeneralnatureofmoralsandofthespecificmoralchoicestobemadebytheindividualinhis/herrelationshipwithothers.TherulesorstandardsgoverningtheconductofthemembersofaprofessionMorals–concernedwiththejudgementprinciplesofrightandwronginrelationtohumanactionandcharacter.Teachingorexhibitinggoodnessorcorrectnessofcharacterandbehaviour.Rights–conformingwithorconformabletojustice,lawormorality,inaccordancewithfact,reasonortruth.Who
teaches
us
what
is
ethical?Teacher?Lawyer?Doctor?Government?Parents?Today’s
ethics
principles
are
built
upon
the
progress
of
human
civilization.Ethics,
technology
and
the
future
humanity?AI
EthicsLaws
and
ethics
are
falling
far
behind
modern
technologies.
/watch?v=bZn0IfOb61U
UnfortunatelyUnfortunatelyGoogle
said
“don‘t
be
evil”But
they
regret!Privacy
or
Security?Privacy
or
Security?CSAM
(ChildSexualAbuseMaterial)/2021/09/03/business/apple-child-safety.htmlTechnologyisprogressingat“warp
speed”whileourethics,socialactsandlawsremainlinearTechnologyhasseeminglylimitlesspotentialtoimproveourlives-butshouldhumansthemselvesbecometechnology?Technologyhasseeminglylimitlesspotentialtoimproveourlives-butshouldhumansthemselvesbecometechnology?Robots
Will
Walk
Among
UsWorld
Future
Society三原則:
Humansshouldnotbecometechnology.(人不要成為技術(shù)本身)HumansshouldnotbesubjecttodominantcontrolbyAI/AGIentities.(人不應(yīng)被任何AI控制)Humansshouldnotfabricatenewcreaturesbyaugmentinghumansoranimals.(人不造“人”)Ethics
in
IT
workplace在人工智能相關(guān)工作中,我們可能會遇到一些難以抉擇的倫理問題除了技術(shù)本身的倫理問題,還有工作倫理:Whatisanethicaldilemma(倫理困境)?Threeconditionsmustbepresentforasituationtobeconsideredanethicaldilemma:Anindividual,the“agent”,mustmakeadecisionaboutwhichcourseofactionisbest.Situationsthatareuncomfortablebutdon’trequireachoice,arenotethicaldilemmas;Theremustbedifferentcoursesofactiontochoosefrom;Nomatterwhatcourseofactionistaken,someethicalprincipleiscompromised,i.e.thereisnoperfectsolution.Allen,K.(2012).Whatisanthicaldilemma?TheNewSocialWorker.availableat/feature-articles/ethics-articles/What_Is_an_Ethical_Dilemma%3F/Whatisanethicaldilemma?Imagefrom:/memes/the-trolley-problem
TheTrolleyproblem
(電車難題)Case
studiesData
access(數(shù)據(jù)獲取相關(guān))Confidentiality(保密相關(guān))Safety(安全相關(guān))Trust(信任相關(guān))Intellectual
Property(知識產(chǎn)權(quán)相關(guān))Privacy(隱私相關(guān))DataAccessYouareworkingforaFinancialservicesindustrycompanydoingauditing/financialtransactionmanagementYougetadatabaseofacompany’sfinancesshowingitsinbigtroubleandabouttogobust,losingallitsshareholdersmoneyYourealizeyourelderlyparentshaveinvestedalltheirlifesavingsinthiscompanyandwillgobrokewhenthishappensWhatdoyoudo???ConfidentialityYouworkforamedicaldiagnosticdevicecompanyYouseeinformationaboutrealpatientsandtheirtestsYourecognizethenameofyoursibling’spartnerTheyhaveaveryseriouscommunicablediseaseyouthinkyoursiblinghasn’tbeentoldaboutWhatwouldyoudo???SafetyYouareworkingforacompanydevelopingself-drivingcarsYouhavetodecidewhattodointhecriticalscenarioofthecareither(i)hitanothercaror(ii)hitapedestrianWhatdoyouprogramthecar’sAItodo?Whatcould/shouldhappeninsuchascenario?Whatdohumandriversdonow?Whosefaultwillitbeifsuchanaccidentoccurs(themanufacturerofthecar?Theprogrammers?Thepersoninthecar?Theothercar?Thepedestriane.g.ifwalkingonthefreeway?)BillingyourITwork–thetruthornot?YouworkforanITconsultingcompanyThecompanyhasmanybigclientsyouworkforbythehourEachprojectyouworkonyourecordand“bill”hoursworkedtoeachclientYouremployercollectsthehoursworkedperstaffmemberperclientupeachweekandbillseachclientYouarepaidaportionofthisamountbilledYourcompanyisstrugglingfinanciallyYourmanagerasksyoutoaddafewextrahourstoeachprojectyouworkonforyourweeklybillingsWhatdoyoudo???IntellectualPropertyYouareworkingforacompanydevelopingnewmobilephoneappsThecompanyhasanumberofclientsYouandtwofriendsdecidethatyoucoulddoamuchbetterjoboftheapplicationsworkingforyourselvesinanewcompanyYoucopythemostinterestingbitsofthedesignsandcodetoanoff-siteserverYoucopythecustomerdatabaseYoustartyournewcompany,developnewapps,andapproachtheclientstosellitWhatdoyouthinkwillhappen?Why?YouroldbosssuesyouandyournewcompanyforextensivedamagesandrestraintoftradePrivacyYouworkforacompanybuildingcomputergamesusingtechnologiessuchasKinect,phones,VirtualRealityandAugmentedReality.Thecompanycapturesinformationaboutgamerse.g.demographics,playingtimes,whatgamestheyareplaying,backgroundconversations,etc.Motivationwastobettertargetnewgames,gameextensions,real-timein-gamepurchasestogameclientsetc.Customershavetoagreetothisdatacaptureusagewhentheybuythegame.Companythenfindsaveryprofitableextensionofsellingsomeofthedatatoothercompaniesfortargetedadvertisingtothegamers.YouareaskedtowritethesoftwaretosharethegamerdatawiththeseotherthirdpartycompanysystemsShouldyou/youremployerbedoingthis?Whowillgetprosecutedforbreachofprivacyanddatalaws??Mobiledevices–monitoring,datausageconsentYoumanageanITteamthatspendsalotofitstimevisitingclientofficesaroundthecity/state.Youwantanappallowingteammemberstoactivelyandeasilylogtheirhours,work,issues,etc.Youareconcernedaboutteammemberssafetyandsec
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度爆炸物運輸安全協(xié)議書3篇
- 服務(wù)行業(yè)安全管理工作總結(jié)
- 二零二五年度個人停車位使用權(quán)投資分紅協(xié)議4篇
- 二零二五年度離婚協(xié)議流程指導(dǎo)與婚姻登記服務(wù)合同2篇
- 二零二五年度智慧家居個人工程承包合同范本2篇
- 【培訓(xùn)教材】醫(yī)院消毒供應(yīng)中心(CSSD)技術(shù)操作規(guī)范解讀
- 通訊行業(yè)銷售總監(jiān)工作總結(jié)
- 二零二五年個人合伙清算協(xié)議書(清算后續(xù)合作)3篇
- 二零二五年度內(nèi)陸淡水水庫漁業(yè)開發(fā)承包合同3篇
- 二零二五年度家政服務(wù)銷售返利合同范本
- 豐順縣縣級集中式飲用水水源地基礎(chǔ)狀況調(diào)查和風(fēng)險評估報告
- 重慶市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 《七律二首 送瘟神》教案- 2023-2024學(xué)年高教版(2023)中職語文職業(yè)模塊
- 2024年中考語文滿分作文6篇(含題目)
- 2024年安全員之江蘇省C2證(土建安全員)題庫與答案
- 第一節(jié)-貨幣資金資料講解
- 2018注冊環(huán)保工程師考試公共基礎(chǔ)真題及答案
- 如何提高售后服務(wù)的快速響應(yīng)能力
- Unit-3-Reading-and-thinking課文詳解課件-高中英語人教版必修第二冊
- 婚介公司紅娘管理制度
- 煤礦電氣試驗規(guī)程
評論
0/150
提交評論