版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省駐馬店市經(jīng)濟(jì)開發(fā)區(qū)2025屆高二上數(shù)學(xué)期末聯(lián)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列說法正確的有()個(gè).①向量,,,不一定成立;②圓與圓外切③若,則數(shù)是數(shù),的等比中項(xiàng).A.1 B.2C.3 D.02.在一個(gè)正方體中,為正方形四邊上的動(dòng)點(diǎn),為底面正方形的中心,分別為中點(diǎn),點(diǎn)為平面內(nèi)一點(diǎn),線段與互相平分,則滿足的實(shí)數(shù)的值有A.0個(gè) B.1個(gè)C.2個(gè) D.3個(gè)3.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種4.已知為等差數(shù)列,為其前n項(xiàng)和,,則下列和與公差無關(guān)的是()A. B.C. D.5.在棱長(zhǎng)為1的正方體中,是線段上一個(gè)動(dòng)點(diǎn),則下列結(jié)論正確的有()A.不存在點(diǎn)使得異面直線與所成角為90°B.存在點(diǎn)使得異面直線與所成角為45°C.存在點(diǎn)使得二面角的平面角為45°D.當(dāng)時(shí),平面截正方體所得的截面面積為6.設(shè)命題甲:,命題乙:直線與直線平行,則()A.甲是乙的充分不必要條件 B.甲是乙的必要不充分條件C.甲是乙的充要條件 D.甲是乙的既不充分也不必要條件7.如圖,在正方體中,點(diǎn)E是上底面的中心,則異面直線與所成角的余弦值為()A. B.C. D.8.從1,2,3,4,5中隨機(jī)抽取三個(gè)數(shù),則這三個(gè)數(shù)能成為一個(gè)三角形三邊長(zhǎng)的概率為()A. B.C. D.9.在平面直角坐標(biāo)系中,已知橢圓的上、下頂點(diǎn)分別為、,左頂點(diǎn)為,左焦點(diǎn)為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.10.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長(zhǎng)線上一點(diǎn),,則=()A. B.C. D.11.設(shè)雙曲線與橢圓:有公共焦點(diǎn),.若雙曲線經(jīng)過點(diǎn),設(shè)為雙曲線與橢圓的一個(gè)交點(diǎn),則的余弦值為()A. B.C. D.12.如圖是拋物線形拱橋,當(dāng)水面在n時(shí),拱頂離水面2米,水面寬4米.水位下降1米后,水面寬為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程為_______.14.已知拋物線C:的焦點(diǎn)為F,過M(4,0)的直線交C于A、B兩點(diǎn),設(shè),的面積分別為、,則的最小值為______15.若拋物線上一點(diǎn)到其準(zhǔn)線的距離為4,則拋物線的標(biāo)準(zhǔn)方程為___________.16.已知等差數(shù)列是首項(xiàng)為的遞增數(shù)列,若,,則滿足條件的數(shù)列的一個(gè)通項(xiàng)公式為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,,是的中點(diǎn),,.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知橢圓的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)斜率為k的直線與橢圓C交于兩點(diǎn),O為坐標(biāo)原點(diǎn),若的面積為定值,判斷是否為定值,如果是,求出該定值;如果不是,說明理由.19.(12分)已知橢圓的離心率為,短軸長(zhǎng)為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)A作斜率為的直線交橢圓于另一點(diǎn)E,連接EP并延長(zhǎng)交橢圓于另一點(diǎn)F,記直線BF的斜率為.若,求直線EF的方程20.(12分)已知圓關(guān)于直線對(duì)稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點(diǎn),若為等腰直角三角形,求直線的方程.21.(12分)已知等差數(shù)列的前項(xiàng)和為,滿足,.(1)求數(shù)列的通項(xiàng)公式與前項(xiàng)和;(2)求的值.22.(10分)如圖,已知拋物線的焦點(diǎn)為,點(diǎn)是軸上一定點(diǎn),過的直線交與兩點(diǎn).(1)若過的直線交拋物線于,證明縱坐標(biāo)之積為定值;(2)若直線分別交拋物線于另一點(diǎn),連接交軸于點(diǎn).證明:成等比數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由向量數(shù)量積為實(shí)數(shù),以及向量共線定理,即可判斷①;求出圓心距,即可判斷兩圓位置關(guān)系,從而判斷②;取,即可判斷③【詳解】對(duì)于①,與共線,與共線,故不一定成立,故①正確;對(duì)于②,圓的圓心為,半徑為,圓可變形為,故其圓心為,半徑為,則圓心距,由,所以兩圓相交,故②錯(cuò)誤;對(duì)于③,若,取,則數(shù)不是數(shù)的等比中項(xiàng),故③錯(cuò)誤故選:A2、C【解析】因?yàn)榫€段D1Q與OP互相平分,所以四點(diǎn)O,Q,P,D1共面,且四邊形OQPD1為平行四邊形.若P在線段C1D1上時(shí),Q一定在線段ON上運(yùn)動(dòng),只有當(dāng)P為C1D1的中點(diǎn)時(shí),Q與點(diǎn)M重合,此時(shí)λ=1,符合題意若P在線段C1B1與線段B1A1上時(shí),在平面ABCD找不到符合條件Q;在P在線段D1A1上時(shí),點(diǎn)Q在直線OM上運(yùn)動(dòng),只有當(dāng)P為線段D1A1的中點(diǎn)時(shí),點(diǎn)Q與點(diǎn)M重合,此時(shí)λ=0符合題意,所以符合條件的λ值有兩個(gè)故選C.3、C【解析】先把4本書按2,1,1分為3組,再全排列求解.【詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C4、C【解析】依題意根據(jù)等差數(shù)列的通項(xiàng)公式可得,再根據(jù)等差數(shù)列前項(xiàng)和公式計(jì)算可得;【詳解】解:因?yàn)椋?,即,所以,,,,故選:C5、D【解析】由正方體的性質(zhì)可將異面直線與所成的角可轉(zhuǎn)化為直線與所成角,而當(dāng)為的中點(diǎn)時(shí),可得,可判斷A;與或重合時(shí),直線與所成的角最小可判斷B;當(dāng)與重合時(shí),二面角的平面角最小,通過計(jì)算可判斷C;過作,交于,交于點(diǎn),由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計(jì)算即可判斷D.【詳解】異面直線與所成的角可轉(zhuǎn)化為直線與所成角,當(dāng)為中點(diǎn)時(shí),,此時(shí)與所成的角為90°,所以A錯(cuò)誤;當(dāng)與或重合時(shí),直線與所成角最小,為60°,所以B錯(cuò)誤;當(dāng)與重合時(shí),二面角的平面角最小,,所以,所以C錯(cuò)誤;對(duì)于D,過作,交于,交于點(diǎn),因?yàn)椋?、分別是、的中點(diǎn),又,所以,四邊形即為平面截正方體所得的截面,因?yàn)?,且,所以四邊形是等腰梯形,作交于點(diǎn),所以,,所以梯形的面積為,所以D正確.故選:D.6、A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合兩直線平行的性質(zhì)進(jìn)行求解即可.【詳解】當(dāng)時(shí),直線的方程為,直線方程為,此時(shí),直線與直線平行,即甲乙;直線和直線平行,則,解得或,即乙甲;則甲是乙的充分不必要條件.故選:.7、B【解析】建立空間直角坐標(biāo)系,利用向量夾角求解.【詳解】以為原點(diǎn),為軸正方向建立空間直角坐標(biāo)系如圖所示,設(shè)正方體棱長(zhǎng)為2,所以,所以異面直線與所成角的余弦值為.故選:B8、C【解析】列舉出所有情況,然后根據(jù)兩邊之和大于第三邊數(shù)出能構(gòu)成三角形的情況,進(jìn)而得到答案.【詳解】5個(gè)數(shù)取3個(gè)數(shù)的所有情況如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10種情況,而能構(gòu)成三角形的情況有{2,3,4;2,4,5;3,4,5}共3種情況,故所求概率.故選:C.9、C【解析】依題意,直線與直線互相垂直,,,故選10、A【解析】根據(jù)空間向量的加減法運(yùn)算法則,直接寫出向量的表達(dá)式,即可得答案.【詳解】=,故選:A.11、A【解析】求出雙曲線方程,根據(jù)橢圓和雙曲線的第一定義求出的長(zhǎng)度,從而根據(jù)余弦定理求出的余弦值【詳解】由題得,雙曲線中,所以,雙曲線方程為:,假設(shè)在第一象限,根據(jù)橢圓和雙曲線的定義可得:,解得:,,所以根據(jù)余弦定理,故選:A12、D【解析】由題建立平面直角坐標(biāo)系,設(shè)拋物線方程為,結(jié)合條件即求.【詳解】建立如圖所示的直角坐標(biāo)系:設(shè)拋物線方程為,由題意知:在拋物線上,即,解得:,,當(dāng)水位下降1米后,即將代入,即,解得:,∴水面寬為米.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的標(biāo)準(zhǔn)方程為x2=y,得拋物線是焦點(diǎn)在y軸正半軸的拋物線,2p=1,∴其準(zhǔn)線方程是y=,故答案為14、【解析】設(shè)直線的方程為,,與拋物線的方程聯(lián)立整理得,由三角形的面積公式求得,再根據(jù)基本不等式可得答案.【詳解】解:由拋物線C:得焦點(diǎn),又直線交C于A、B兩點(diǎn),所以直線的斜率不為0,則設(shè)直線的方程為,,聯(lián)立,整理得,則,又,,所以,又,當(dāng)且僅當(dāng),即時(shí)取等號(hào),所以的最小值為.故答案為:.15、【解析】先由拋物線的方程求出準(zhǔn)線的方程,然后根據(jù)點(diǎn)到準(zhǔn)線的距離可求,進(jìn)而可得拋物線的標(biāo)準(zhǔn)方程.【詳解】拋物線的準(zhǔn)線方程為,點(diǎn)到其準(zhǔn)線的距離為,由題意可得,解得,故拋物線的標(biāo)準(zhǔn)方程為.故答案為:.16、,答案不唯一【解析】由,,可得,進(jìn)而解得,然后寫出通項(xiàng)公式即可.【詳解】設(shè)數(shù)列的公差為d,由題可得,因?yàn)?,,所以有,解得,只要公差d滿足即可,然后根據(jù)等差數(shù)列的通項(xiàng)公式寫出即可,我們可以取,此時(shí).故答案為:,答案不唯一.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,分別求出向量和,證明即可;(2)先求出和平面的法向量,然后利用公式求出,則直線與平面所成角的正弦值即為.【小問1詳解】證明:∵,,∴△≌△,∴,設(shè),在△中,由余弦定理得,即,則,即,,連接交于點(diǎn),分別以,為軸、軸,過作軸,建立如圖空間直角坐標(biāo)系,則,,,,,,的中點(diǎn),則,,∵,∴.【小問2詳解】由(1)可知,,,,設(shè)平面的法向量為,則,即,令,則,即,則,記直線與平面所成角為,.18、(1)(2)是定值,定值為6【解析】(1)根據(jù)題意條件,可直接求出的值,然后再利用條件中、的關(guān)系,借助即可求解出、的值,從而得到橢圓方程;(2)根據(jù)已知條件設(shè)出、所在直線方程,然后與橢圓聯(lián)立方程,分別表示出根與系數(shù)的關(guān)系,再表示出弦長(zhǎng)關(guān)系,再計(jì)算點(diǎn)到直線的距離,把面積用和的式子表示出來,通過給出的面積的值,找到和的等量關(guān)系,將等量關(guān)系帶入到利用跟與系數(shù)關(guān)系組合成的中即可得到答案.【小問1詳解】由題意:,由知:,故橢圓C的標(biāo)準(zhǔn)方程為,【小問2詳解】設(shè):,①橢圓.②聯(lián)立①②得:,,即∴,O到直線l的距離,∴,∴,即,∴.故為定值6.19、(1)(2)【解析】(1)由離心率得關(guān)系,短軸求出,結(jié)合關(guān)系式解出,可得橢圓的標(biāo)準(zhǔn)方程;(2)設(shè),,過EF的方程為,聯(lián)立直線與橢圓方程得韋達(dá)定理,結(jié)合斜率定義和化簡(jiǎn)得,由在橢圓上代換得,聯(lián)立韋達(dá)定理可求,進(jìn)而得解;【小問1詳解】由題意可得,,,又,解得所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由(1)得,,顯然直線EF的斜率存在且不為0,設(shè),,則,都不為和0設(shè)直線EF的方程為,由消去y得,顯然,則,因?yàn)?,所以,等式兩邊平方得①又因?yàn)椋跈E圓上,所以,②將②代入①可得,即,所以,即,解得或(舍去,此時(shí))所以直線EF的方程為20、(1)(2)或【解析】(1)根據(jù)題意得到等量關(guān)系,求出,,進(jìn)而求出圓的方程;(2)結(jié)合第一問求出的圓心和半徑,及題干條件得到圓心到直線的距離為,列出方程,求出的值,進(jìn)而得到直線方程【小問1詳解】由題意得:直線過圓心,即,且,解得:,,所以圓C的方程為;【小問2詳解】的圓心為,半徑為2,由題意得:,圓心到直線的距離為,即,解得:或,所以直線的方程為:或.21、(1),;(2).【解析】(1)設(shè)出等差數(shù)列的公差,借助前項(xiàng)和公式列式計(jì)算作答.(2)由(1)的結(jié)論借助裂項(xiàng)相消去求解作答.【小問1詳解】設(shè)等差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 31901-2024服裝穿著試驗(yàn)及評(píng)價(jià)方法
- 2025預(yù)算合同部管理制度
- 2025材料供貨合同
- 廠房獨(dú)家代理協(xié)議合同范例
- 抵款房屋合同范例
- 職工餐承包合同范例
- 品牌全案策劃合同范例
- 2025合同增補(bǔ)協(xié)議
- 影視公司接待合同范例
- 專業(yè)版不動(dòng)產(chǎn)抵押合同范例
- 證券投資學(xué)期末考試卷及答案2套
- 爆花(2023年陜西中考語文試卷記敘文閱讀題及答案)
- 外科護(hù)理疑難病例
- TTI-Z世代2024職場(chǎng)期望調(diào)研報(bào)告
- 2024年中小學(xué)學(xué)生防范電信網(wǎng)絡(luò)詐騙知識(shí)競(jìng)賽題庫及答案
- 職業(yè)生涯規(guī)劃與職場(chǎng)能力提升智慧樹知到答案2024年同濟(jì)大學(xué)
- 11ZJ111《變形縫建筑構(gòu)造》
- 2020年廣西職業(yè)院校技能大賽高職組《 模具數(shù)字化設(shè)計(jì)與制造工藝 》賽項(xiàng)賽題(樣題)
- 短視頻技術(shù)與應(yīng)用智慧樹知到期末考試答案章節(jié)答案2024年濟(jì)南大學(xué)
- LTC與鐵三角從線索到回款-讀書筆記
- 哈爾濱2024年黑龍江哈爾濱鐵道職業(yè)技術(shù)學(xué)院招聘教師10人筆試歷年典型考題及考點(diǎn)附答案解析
評(píng)論
0/150
提交評(píng)論