版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
NavigatingThePathtoAutonomous
Mobility
Prof.AmnonShashua,CEO
Prof.ShaiShalev-Schwartz,CTO
HowtoSolveAutonomy
-Reachingareal“fullselfdriving”system(eyes-off)
-Whilemaintainingasustainablebusiness
*SubjecttodefinedOperationalDesignDomainandproductsspecifications
HowtoSolveAutonomy
Sensors
AIApproach
Cost
Modularity
GeographicScalability
MTBF
Waymo
Lidar-centric
CAIS
?
Tesla
Cameraonly
End-to-end
?
Mobileye
Camera-centric
CAIS
?
HowtoSolveAutonomy
Sensors
AIApproach
Cost
Modularity
GeographicScalability
MTBF
Waymo
Lidar-centric
CAIS
?
Tesla
Cameraonly
End-to-end
?
Mobileye
Camera-centric
CAIS
?
Whichismorelikely
tosucceed?
End-to-EndApproach
PremiseReality
Nogluecode
GluecodeshiftedtoofflineRare&correctvs.common&incorrect
“AValignment”problem
UnsuperviseddataalonecanreachsufficientMTBF
Really?
-Calculator
-Shortcutlearningproblem
-Longtailproblem
“NoGlueCode”:AVAlignmentProblem
End-to-endaimstomaximizeP[ylx]whereyisthefuturetrajectoryhumanwouldtake,denotedy,giventhepreviousvideo,denotedx
Thislearningobjectiveprefers'common&incorrect'over'rare&correct’
Examples:
1.Mostdriversslowdownatastopsignbutdonotcometoafullstop
-Rollingstop三common&incorrect
-Fullstop三rare&correct
2.“Rudedrivers”thatcutinline
3.Recklessdrivers
ThisiswhyRLHFisusedinLLMs:therewardmechanismdifferentiatesbetween‘correct’and‘incorrect’
Gluecodeshiftedtooffline
CanUnsupervisedDataAloneReachHighMTBF?
Calculators
End-to-endlearningfromdataoftenmissesimportantabstractionsandthereforedoesn’tgeneralizewell
Example
Learningtomultiply2numbers,ataskwhereeventhelargestLLMsstruggle
/yuntiandeng/status/1836114401213989366
CanUnsupervisedDataAloneReachHighMTBF?
Calculators
End-to-endlearningfromdataoftenmissesimportantabstractionsandthereforedoesn’tgeneralizewell
Example
Learningtomultiply2numbers,ataskwhereeventhelargestLLMsstruggle
Whatcanbedone?
ChatGPT
Callatool(calculator)
-ProvidetoolstoLLMs
-→CompoundAISystems(CAIS)
CanUnsupervisedDataAloneReachHighMTBF?
ShortcutLearningProblem
Relyingondifferentsensormodalitiesisawell-establishedmethodologyforincreasingMTBFThequestion:Howtofusethedifferentsensors?
The“end-to-endapproach”:Justfeedallsensorsintoonebignetworkandtrainit
“TheShortcutLearningProblem”
Whendifferentinputmodalitieshavedifferentsamplecomplexities,end-to-endStochasticGradientDescentstrugglesinleveragingtheadvantagesofallmodalities
CanUnsupervisedDataAloneReachHighMTBF?
ShortcutLearningProblemConsider3typesofsensors
Radar
Lidar
Camera
SupposethateachsystemhasinherentlimitationsthatcauseafailureprobabilityofE,whereEissmall(e.g.,onein1000hours)
Additionally,assumethatthefailuresofthedifferentsensorsareindependent
Wecomparetwooptions
-Lowlevel,end-to-end,fusion(trainasystembasedonthecombinedinput)
-CAIS:Decomposabletrainingofasystempereachmodality,followedbyhigh-levelfusion
Whichoptionisbetter?
ShortcutLearningProblem:ASimpleSyntheticExample
Distribution:allvariablesareover{+1,-1},anddataiscreatedbythefollowingsimplegenerativemodel:
y-B(),r1,r2,r3-i·i·d.B,x1=yr1x2=yr2x4x5-i·i·d.B()x3=yr3x4x5
ThisisasimplemodeloffusionbetweenLidar,Radar,Camerasystemswiththefollowingproperties:
-The3systemshaveuncorrelatederrors(modeledbyr1,r2,r3)oflevele
-x1andx2are”simpler”systems(modelingradarandlidar),whiletheproductofx3x4x5equalstoyr3,andthereforeisa“complicatedtolearn”system(modelingthecamera)
Theorem:
-CaneasilyreacherrorofO(e2)withdecomposabletrainingof1-hidden-layerFCN+majority
-End-to-endSGDtrainingwillbe“stuck”atanerrorofeforT/ewhereTisthetimecomplexityoflearningthecomplicatedsystem(camera)individually
Whathappened?Isn’tend-to-endalwaysbetter?
Shortcutlearningproblem:End-to-endSGDstrugglestoleveragesystemswithdifferentsamplecomplexities
CanUnsupervisedDataAloneReachHighMTBF?
TheLongTailProblem
Intheoptimisticscenario,afewrareeventsreducetheprobabilitymassconsiderablyInthepessimisticscenario,eachrareeventhasminimalimpactontheprobabilitymass
P(event)
PessimisticScenario
ToomanyrareeventswhereeachdoesnotreduceP(event)noticeably
OptimalScenario
Events
LongTailofTeslaFSD
-TeslaFSDtrackerindicatesthatreducingvariancesolelythroughadatapipelineresultsinincrementalprogress
/news/735038/tesla-fsd-occasionally-dangerously-inept-independent-test/
*-publicdataonTesla'srecent12.5.x
HowtoSolveAutonomy
Sensors
AIApproach
Cost
Modularity
GeographicScalability
MTBF
Waymo
Lidar-centric
CAIS
?
Tesla
Cameraonly
End-to-end
?
Mobileye
Camera-centric
CAIS
?
TheBias-VarianceTradeoffinMachineLearning
Bias(‘a(chǎn)pproximationerror’)
Totalerror
ThelearningsystemcannotreflectthefullrichnessofrealityVariance(‘generalizationerror’)
Thelearningsystemoverfitstotheobserveddata,andfailstogeneralizetounseenexamples
Error
ε
VarianceBias
Totalerror
AbstractionInjections
MobileyeCompoundAISystem(CAIS)
AVAlignment
RSS
Separatescorrectfromincorrect
ReachingSufficientMTBF
Abstractions
-Sense/Plan/Act
-Analyticcalculations:RSS,time-to-contact…
Redundancies
Sensors
Algo
Highlevelfusion
MobileyeCompoundAISystem(CAIS)
AVAlignment
RSS
Separatescorrectfromincorrect
ReachingSufficientMTBF
Abstractions
-Act
ExtremelyEfficientAI
(Shaiwillcover)
Sense/Plan/
-Analyticcalculations:RSS,time-to-contact…
Redundancies
Highlevelfusion
Algo
Sensors
PGF
HighLevelFusion:HowtoPerform
Considerasimplecase
Wearefollowingaleadvehicle,andwehave3sensors
Camera
Radar
Lidar
Iftherearecontradictionsbetweenthesensors,wheresomedictateastrongbrakingwhileothersnot,whatshouldwedo?
Majority:2outof3(2oo3)Propertyofmajority
IfeachmodalityhasanerrorprobabilityofatmostE,andtheerrorsareindependent,then-majorityvotehasanerrorprobabilityofo(e2)
MajorityisNotAlwaysApplicable
Nowconsider3systems,eachonepredictswhereisourlane
Majorityisnotdefinedfornon-binarydecisions,sowhatcanbedone?
ThePrimary-Guardian-Fallback(PGF)Fusion
Weproposeageneralapproachforgeneralizingthemajorityruletononbinarydecisions
Webuild3systems
-Primary(P)-Predictswherethelaneis
-Guardian(G)-Checksifthepredictionoftheprimarysystemisvalidornot
-Fallback(F)-Predictswherethelaneis
Fusion:
-IfGuardiandictatesPrimaryisvalid,choosevalid
-Otherwise,chooseFallback
Theorem:ThePGFhasthesamepropertyofthemajorityrule
IfthefailureprobabilityofeachsystemisatmostEandtheseprobabilitiesareindependent,thenthefusedsystemhasanerrorofo(E2)
MobileyeCompoundAISystem(CAIS)
AVAlignment
RSS
Separatescorrectfromincorrect
ExtremelyEfficientAI
ReachingSufficientMTBF
Abstractions
-Act
Sense/Plan/
-Analyticcalculations:RSS,time-to-contact…
Redundancies
Sensors
Algo
Highlevelfusion
ExtremelyEfficientAI
TransformersforSensingandPlanningatx100efficiency
Inferencechip(EyeQ6H):Designforefficiency
EfficientlabelingbyAutoGroundTruth
Efficientmodularitybyteacher-studentarchitecture
Prologue
6AIRevolutions
MachineLearning
DeepLearning
GenerativeAI
UniversalLearning
Transformers
Sim2Real
Reasoning
Pre-Transformers:ObjectDetectionPipeline
Clusteringandmax
suppression
2Dto3D
ThreeRevolutionsof
GenerativePretrainedTransformers(GPTs)
Tokenizeeverything
Generative,Auto-regressive
Transformerarchitecture:’Attentionisallyouneed’
ThreeRevolutionsofGenerativePretrainedTransformers
Tokenizeeverything
Input:Transcribeeachinputmodality(e.g.,text,images)intoasequenceoftokens
Output:Transcribeeachoutputmodalityasasequenceoftokensandemploygenerative,auto-regressivemodelswithsuitablelossfunction
Accommodates:Complexinputandoutputstructures(e.g.,sets,sequences,trees)
Objectdetectionpipelineexample:
Input
Singleimage
’Tokenized’input
Sequenceofimagepatches
‘Tokenized’output
Sequenceof4coordinatesdeterminingthelocationoftheobjectsintheimage
ThreeRevolutionsofGenerativePretrainedTransformers
Generative,Auto-regressive
Previousapproach:Classificationorregressionwithfixed,smallsize,outputs(e.g.,ImageNet)Currentapproach:Learnprobabilitiesforsequencesofarbitrarylength(e.g.,sentence
generation)
KeyFeatures:ChainRule-Modelssequencedependencies
Generative-FitsdatausingmaximumlikelihoodEnables:Self-supervision(e.g.,futurewordsinadocument)
Handlesuncertainty(multiplevalidoutputsbylearningP[ylx])
ThreeRevolutionsofGenerativePretrainedTransformers
Example:Considera1000x1000pixelimagecontaining4vehicles,withtheimagedividedinto10x10pixelpatches.Whataretheprobabilitiesforidentifyingvehiclepositionswhennotusingthechainrulecomparedtowhenusingthechainrule?
x1,1,y1,1,X1,2,y1,21……,X4,1,y4,1,X4,2,y4,2
Listof4coordinatespervehicle
Usingthechainrule
PVehiclesII
=Px1)1II*Py1)1Ix1)1)I*…*Py4)2Ix1)1)…)x4)2)I
Dim=100
Withoutusingthechainrule
PVehiclesII=Px1)1)y1)1)x1)2)y1)2)….)x4)1)y4)1)x4)2)y4)2IIDim=1032
ThreeRevolutionsofGenerativePretrainedTransformers
Transformerarchitecture:’Attentionisallyouneed’
TailoredforproblemofpredictingPtokenn+1tokennstokenn1,tokenol]
...
Transformerlayern
Self-reflection
Self-attention
FCNFCNFCNFCNFCNFCNFCN
...
...
TransformersLayer:GroupThinkingAnalogy
Imagineateamdiscussingaproject
-Eachpersonhastheirownareaofexpertise
-theyallcontributetotheoveralloutcome
-Everyoneisworkingsimultaneouslyratherthanoneafteranother
Self-attention
Eachmemberlistenstoothersandrespondsin
real-time,adjustingtheirinputbasedon
importantpointsraised
Somethingis
fullyblocking
myview,maybe
atruck
Doesanyoneseea
closetruckonour
leftside?
Ipartiallysawaverybigwheel
Ihavenoidea
No
Self-reflection
Eachparticipanttakestimealonetoprocessideasandorganizetheirthoughts
TransformersLayer:Self-Reflection
-Eachtokenindividuallyprocessesits‘knowledge’usingamulti-layer-perceptron,withoutinteractingwithothertokens
n
Input
}d
Self-reflection
Self-reflection
FCN
...
FCN
...
d2n
...
Self-reflection
FCN
...
Output
TransformersLayer:Self-Attention
-Eachtokensend(query’totheothertokens,whichrespondwithvaluesiftheir(key’matchthe(query’
-Thequeryingtokenthenaveragesthereceivedvalues,facilitatinginter-tokenconnectivity
...
Questions
QueryKeyValueQueryKeyValueQueryKeyValue
ExamplefromtheGroupThinkingAnalogy
Personiasks:“Doesanyoneknowssomethingaboutx?”
Personjresponds:“Yes,Ihavewhattosayaboutit”
Personj′responds:”No,Idon’tknowanythingaboutit”
Relevancy
...
...
queryikeyj
..
i,j..
.
.
n2d
...
...
...
No,Idon’t
knowanything
aboutit
Yes,Ihave
whattosay
aboutit
Doesanyone
knowsomething
aboutx?
TransformersLayer:Self-Attention
NormalizesScores:Itconvertsrawattentionscoresintonormalized
probabilities
ProbabilityDistribution:Eachsetofattentionscoresistransformed
sothattheirprobabilitiessumto1
FocusMechanism:Thisallowsthemodeltoweighdifferentpartsof
theinputdifferently,focusingmoreon
relevantpartsbasedontheprobabilities
...
...
...
i,j
...
...
...
...
Normalize
eachrowby
SoftMax
...
Messageigetsfromthegroup
...
aijvj
j
...
...
αi,j
...
...
...
Indicateshowmuchi
wantstopayattentiontoj
Transformers:Complexity
L*(nd2+n2d)
#layers
Self
reflection
Self
attention
Costperlayerforalternativearchitectures:
FullyConnectedNetwork(FCN)Flattenndvalues
RecurrentNeuralNetwork(RNN)‘Talks’onlywithprevioustoken
...
...
Input
...
...
...
...
...
...
...
...
Output
...
Connections:d2n2
Connections:nd2
Transformers
‘EffectiveSparsity’ofTransformers
Sparserd2n+n2d
Anymodality
ConvolutionalNeural
FullyConnectedNetwork(FCN)
Networks(CNNs)
d2n2ConnectionsSparsityspecifictoimages
Denser,buteffectivelyselects
onlyafewpasttokensfor
communication
Long-Short-Term-Memory
(LSTM)
RecurrentNeuralNetworks
(RNN)
Markovsparsitycontext
representedbyastatevector
The3RevolutionsEnableaUniversalSolution
Handlealltypesofinputs
Dealswithuncertainty(bylearningprobability)Enablesalltypesofoutputs
Theultimatelearningmachine?
ATransformerEnd-to-endObjectDetectionNetwork
Input:images
Output:allobjects
ATransformerEnd-to-endObjectDetectionNetwork
The5“Multi”problems
Multi-camera:surround
Multi-frame::frommultipletimestamps
Multi-object:needstooutputall(vehicles,pedestrians,hazards,…)
Multi-scale:needstodetectfarandcloseobjectsatdifferentresolutions
Multi-lanes:needstoassignobjectstorelevantlanes/crosswalks
-UniversalityofTransformers
-Encodeimagepatches(fromdifferentcameras,differentframes,anddifferentresolutions)astokens
-Encodeobjectsasasequenceoftokens(foreachobject:position,velocity,dimensions,type)
-ApplyaTransformertogeneratetheprobabilityofoutputtokensgiveninputtokensinanAuto-Regressivemanner
NetworkArchitecture:VanillaTransformer
-CNNbackboneforcreatingimagetokens:
-C=32highresolutionimagesareconvertedto32imagesofresolution20x15yieldingNp=300"pixels))perimage,andd=256channels
-Encoder:
-WehaveN=C*Np=9600uimagetokens)),eachatdimensiond=256
-AvanillatransformernetworkwithLlayersrequireso(L*N2d+d2N)
-Encoderalonerequiresaround100TOPs(assuming10Hz,L=32)
-Decoder:
-Predictasequenceoftokensrepresentingalltheobjects(hundredsoftokens)
-AvanillaARdecodingissequential,andwithKVcache,eachiterationinvolvescomputeofatleasto(LNd)pertokenprediction(buttherealissueisIOofLNdhere)
-Around100Mbpertokenprediction!
VanillaTransformersareNotEffiecient
Transformersareabruteforceapproachwithlimitedwaytoutilizepriorknowledge
Thisisthe“darkside”ofuniversality
Self-connectivity:nd2Inter-connectivity:n2d
n2d
InAVn≈104,whichbecomesabottleneck
GPT3
d=12288n=2048
nd2=317B
Wepayboth
-Samplecomplexity(dislargeasitneedstohandlealltheinformationineachtoken)
-Computationalcomplexityofinference(n,darelarge)
-(bothissuesareknownintheliterature,andgeneralmitigationssuchas“mixture-of-experts”and“state-space-models”wereproposed)
WhatAboutEnd-to-EndFromPixelstoControlCommands
Weaknessesoftransformers
Bruteforce
Thelearningobjective(oflearningpylx])prefers‘common&incorrect’yover'rare&correct’y
QuestionablewhetheritcanreachsufficientlyhighMTBF
-Missesimportantabstractionsandthereforedoesn’tgeneralizewell
-TheShortcutLearningProblem
(aspartofCAIS,oure2earchitecturehasanadditionalheadthatoutputscontrolcommandsdirectlyaswell,whichisfineasalowMTBFredundantcomponent)
MobileyeCompoundAISystem(CAIS)
AVAlignment
RSS
Separatescorrectfromincorrect
ReachingSufficientMTBF
Abstractions
-Sense/Plan/Act
-Analyticcalculations:RSS,time-to-contact…
Redundancies
Sensors
Algo
Highlevelfusion
Implications
-MustoutputSensingState
-Eachsubsystemmustbesuperefficientbecausewedon’thaveasinglesystem
ExtremelyEfficientAI
TransformersforSensingandPlanningatx100efficiency
EfficientlabelingbyAutoGroundTruth
STAT:SparseTypedAttention
Vanillatransformer:n2d+d2n
STAT:
-TokenTypes:Eachtokenhasa“type”
-Dimensionality:ofembeddingsandself-reflectionmatricesmayvarybasedonthetokentype.
-TokenConnectivity:Theconnectivitybetweentokensissparseanddependsontheirtypes
-LinkTokens:Weadd“l(fā)ink”tokensforcontrollingtheconnectivity
-InferenceEfficiency:Forourend-to-endobjectdetectiontask,STATisx100fasteratinferencetimeandatthesametimeslightlyimprovesperformance
STAT:SparseTypedAttention
Vanillatransformer:n2d+d2n
STATEncoderforObjectDetection:
-Tokentypes:
-Imagetokens:recall,wehaveC=32imageseachwithNp=300“pixels”,yielding9600imagetokens
-WeaddNL=32“Link”tokensperimage
-STATBlock:
-Withineachimage,CrossAttentionbetweenthe300imagetokensandthe32linktokens(C?Np?NL?d)
-Acrossimages,fullselfattentionbetweenalllinktokensC?NL2d
2
-ComparedtoC?Npdinvanillatransformers,wegetafactorimprovementof,whichisapproximatelyx100fasterinourcase
-Performance:Forourend-to-endobjectdetectiontask,STATisnotonlyx100,butalsoimprovesperformance(weenlargetheexpressivityofthenetworkwhilemakingitmuchfasteratinferencetime)
...
300imagetokens
...
32Linktokens
...
300imagetokens
...
32Linktokens
...
C=32images
...
300imagetokens
...
32Linktokens
Crossattention
300imagetokens
...
...
32Linktokens
...
300imagetokens
...
32Linktokens
...
300imagetokens
...
32Linktokens
...
Crossimage
300imagetokens
...
32Linktokens
...
ParallelAuto-Regressive(PAR)
Weneedtodetectallobjectsinthescene:Whatistheorder?Auto-Regressive:Itdoesn’tmatterduetothechainrule!
Priceofsequentialdecoding
-Sequentialdecodingiscostlyonallmoderndeeplearningchips(duetoIO)
-Weaddedun-needed”fakeuncertainty”(whatistheorder)
”Truckandtrailer”problem
DeTR(DETectionTransformer,FacebookAI,May2020)
-Outputallobjectsinparallel
-Hungarianmatchingtodeterminetherelativeorderbetweenthenetwork’spredictionsandtheorderofthegroundtruth
-Problem:Doesn’tdealwellwithtrueuncertainty
-The“truckandtrailer”problem
-Streetswhichcanbe1or2lanes,etc.
Parisstreets
ParallelAuto-Regressive(PAR)
-Thedecodercontainsqueryheadswhich
performcrossattentionwiththeencoder’slinktokensentirelyinparallel
-Eachqueryheadoutputs,auto-regressively,
0/1/2objects(independentlyandinparalleltotheotherqueryheads)
-→dealingonlywith“trueuncertainties”andnotwith“fakeuncertainties”
Inputimages
CNNTokenization
STATEncoder
Outputtokens
Queryheads
IntermediateSummary
MachineLearning
TransformersrevolutionizedAI
-Thegood
-Universal,generative,AI
DeepLearning
-Thebad
Transformers
-Can’tseparate“correct&rare”from“wrong&common”
-Missimportantabstractions
GenerativeAI
-Questionablewhenveryhighaccuracyisrequired
-Theugly
-Bruteforceapproach,unnecessarilyexpensive
UniversalLearning
Workingsmarterwithtransformers
Sim2Real
-STAT:x100faster&betteraccuracy
-PAR:x10faster&embraceuncertaintyonlywhenitisneeded
Reasoning
ExtremelyEfficientAI
efficiency
Inferencechip(EyeQ6H):Designforefficiency
EfficientlabelingbyAutoGroundTruth
LowHigh
efficiencyEfficiencyefficiency
HardwareArchitecturesTradeoff:Flexibilityvs.Efficiency
●Fixed-function
GPU
.CPU
SpecialpurposeFlexibilityGeneralpurpose
EyeQ6High:5DistinctArchitectures
EyeQ6H
LowHigh
efficiencyEfficiencyefficiency
XNN
-AddressMobileye’shighefficiencyandflexibilityneeds
PMA
-Enableacceleratingrangeofparallelcomputeparadigms
VMP
MPC
MIPS
SpecialpurposeFlexibilityGeneralpurpose
5DistinctArchitectures:EnhancedParallelProcessing
●MIPS
-Ageneral-purposeCPU
MPC
-ACPUspecializedforthreadlevelparallelism
●VMP
-Very-Long-Instruction-Width(VLIW)-Single-Instruction-Multiple-Data(SIMD)
-Designedfordata-levelparallelismoffixedpointsarithmetic(e.g.,convergethe12-bitrawimageintoasetof8-bitimagesofdifferentresolutionsandtone-maps)
-Basically,performsoperationsonvectorsofintegers
●PMA
-Coarse-Grain-Reconfigurable-Array(CGRA)
-Designedfordata-levelparallelismincludingfloatingpointarithmetic
-Basically,performsoperationsonvectorsoffloats
●XNN
-Dedicatedtofixedfunctionsfordeeplearning:convolutions,matrix-multiplication/fully-connect,andrelatedactivationpost-processingcomputations:ExcelsinCNNs,FCNs,Transformers
EyeQ5H
EyeQ6H
EyeQ6Hvs.EyeQ5H:2xinTOPS,But10xinFPS!
1200
1000
Framesper
Second
800
600
400
200
0
16TOPS(int8)
27W(max)
34TOPS(int8)
33W(max)
1151
1062
975
252
EyeQ6H
126
82
25
EyeQ5H
91
WeightedAverage
PixelLabelingRoadMultiObject
Detection
NeuralNetwork
EyeQ6Hvs.Orin:It’sNotAllAboutTOPS
TheoreticalTOPS
34TOPS(int8)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《心律失常講課》課件
- 《熱力學(xué)復(fù)習(xí)秋》課件
- 語文:高考每日快餐(46套)
- 距離產(chǎn)生美高考語文閱讀理解
- 服裝行業(yè)安全生產(chǎn)審核
- 《實(shí)驗(yàn)系統(tǒng)簡介》課件
- 電器銷售工作總結(jié)
- 安全防護(hù)行業(yè)技術(shù)工作總結(jié)
- 重慶市合川區(qū)2022-2023學(xué)年九年級上學(xué)期期末化學(xué)試題
- 手機(jī)銷售員工作總結(jié)
- 《社區(qū)安全防范》課程教案
- 中石油度員工HSE培訓(xùn)計(jì)劃
- 瀝青路面損壞調(diào)查表-帶公式
- (完整版)Adams課程設(shè)計(jì)
- 30課時(shí)羽毛球教案
- 客服部相關(guān)報(bào)表解
- 全踝關(guān)節(jié)置換術(shù)ppt課件
- 學(xué)術(shù)英語寫作范文17篇
- 任發(fā)改委副主任掛職鍛煉工作總結(jié)范文
- 中華任姓字輩源流
- 2021年人事部年度年終工作總結(jié)及明年工作計(jì)劃
評論
0/150
提交評論