湖南省長沙瀏陽市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
湖南省長沙瀏陽市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
湖南省長沙瀏陽市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
湖南省長沙瀏陽市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
湖南省長沙瀏陽市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙瀏陽市2025屆高二數(shù)學第一學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列中,、是的兩根,則()A B.C. D.2.如圖,直四棱柱的底面是菱形,,,M是的中點,則異面直線與所成角的余弦值為()A. B.C. D.3.已知橢圓的左右焦點分別為,直線與C相交于M,N兩點(其中M在第一象限),若M,,N,四點共圓,且直線傾斜角不小于,則橢圓C的離心率e的取值范圍是()A. B.C. D.4.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.5.已知向量,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.雙曲線的左、右焦點分別為、,過點且斜率為的直線與雙曲線的左右兩支分別交于P、Q兩點,若,則雙曲線C的離心率為()A. B.C. D.7.已知雙曲線的對稱軸為坐標軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或8.若數(shù)列是等比數(shù)列,且,則()A.1 B.2C.4 D.89.已知,則“”是“”的()A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件10.已知拋物線,為坐標原點,以為圓心的圓交拋物線于、兩點,交準線于、兩點,若,,則拋物線方程為()A. B.C. D.11.已知雙曲線的兩個焦點為,,是此雙曲線上的一點,且滿足,,則該雙曲線的方程是()A. B.C. D.12.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不透明袋中裝有完全相同,標號分別為1,2,3,…,8的八張卡片.從中隨機取出3張.設X為這3張卡片的標號相鄰的組數(shù)(例如:若取出卡片的標號為3,4,5,則有兩組相鄰的標號3、4和4、5,此時X的值是2).則隨機變量X的數(shù)學期望______14.已知正項等比數(shù)列的前項和為,且,則_______15.在空間直角坐標系中,已知,,,,則___________.16.已知對任意正實數(shù)m,n,p,q,有如下結論成立:若,則有成立,現(xiàn)已知橢圓上存在一點P,,為其焦點,在中,,,則橢圓的離心率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱錐中,為底面中心,,為中點,(1)求證:平面;(2)求:(?。┲本€到平面的距離;(ⅱ)求直線與平面所成角的正弦值18.(12分)已知拋物線C的頂點在坐標原點,準線方程為(1)求拋物線C的標準方程;(2)若AB是過拋物線C的焦點F的弦,以弦AB為直徑的圓與直線的位置關系是什么?先給出你的判斷結論,再給出你的證明,并作出必要的圖形19.(12分)已知集合,.若,且“”是“”的充分不必要條件,求實數(shù)a的取值范圍20.(12分)如圖1,四邊形為直角梯形,,,,,為上一點,為的中點,且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面.(2)能否在邊上找到一點(端點除外)使平面與平面所成角的余弦值為?若存在,試確定點的位置,若不存在,請說明理由.21.(12分)年世界人工智能大會已于年月在上海徐匯西岸舉行,某高校的志愿者服務小組受大會展示項目的啟發(fā),會后決定開發(fā)一款“貓捉老鼠”的游戲.如圖所示,、兩個信號源相距米,是的中點,過點的直線與直線的夾角為,機器貓在直線上運動,機器鼠的運動軌跡始終滿足:接收到點的信號比接收到點的信號晚秒(注:信號每秒傳播米).在時刻時,測得機器鼠距離點為米.(1)以為原點,直線為軸建立平面直角坐標系(如圖),求時刻時機器鼠所在位置的坐標;(2)游戲設定:機器鼠在距離直線不超過米的區(qū)域運動時,有“被抓”的風險.如果機器鼠保持目前的運動軌跡不變,是否有“被抓”風險?22.(10分)已知公差不為0的等差數(shù)列的前項和為,且,,成等比數(shù)列,且.(1)求的通項公式;(2)若,求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用韋達定理結合等差中項的性質可求得的值,再結合等差中項的性質可求得結果.【詳解】對于方程,,由韋達定理可得,故,則,所以,.故選:B.2、D【解析】用向量分別表示,利用向量的夾角公式即可求解.【詳解】由題意可得,故選:D【點睛】本題主要考查用向量的夾角公式求異面直線所成的角,屬于基礎題.3、B【解析】設橢圓的半焦距為c,由橢圓的中心對稱性和圓的性質得以為直徑的圓與橢圓C有公共點,則有以,再根據(jù)直線傾斜角不小于得,由橢圓的定義得,由此可求得橢圓離心率的范圍.【詳解】解:設橢圓的半焦距為c,由橢圓的中心對稱性和M,,N,四點共圓得,四邊形必為一個矩形,即以為直徑的圓與橢圓C有公共點,所以,所以,所以,因為直線傾斜角不小于,所以直線傾斜角不小于,所以,化簡得,,因為,所以,所以,,又,因為,所以,所以,所以,所以.故選:B.4、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點睛】此題考查條件概率問題,屬于基礎題5、A【解析】根據(jù)平面向量垂直的性質,結合平面向量數(shù)量積的坐標表示公式、充分性、必要性的定義進行求解判斷即可.詳解】當時,有,顯然由,但是由不一定能推出,故選:A6、C【解析】由,且,可得,再結合,可得,進而在△中,由余弦定理可得到齊次方程,求出即可.【詳解】由題意,可得,因為,所以,又,所以,在△中,,即,由余弦定理,可得,整理得,則,即,解得,因為,所以.故選:C.【點睛】方法點睛:本題考查求雙曲線的離心率,屬于中檔題.雙曲線離心率的求法:(1)由條件直接求出(或或),或者尋找(或或)所滿足的關系,利用求解;(2)根據(jù)條件列出的齊次方程,利用轉化為關于的方程,解方程即可,注意根據(jù)對所得解進行取舍.7、B【解析】分雙曲線的焦點在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點在軸上,則有,則雙曲線的離心率為;若焦點在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點睛】本題考查雙曲線離心率的求解,在雙曲線的焦點位置不確定的情況下,要對雙曲線的焦點位置進行分類討論,考查計算能力,屬于基礎題.8、C【解析】根據(jù)等比數(shù)列的性質,由題中條件,求出,即可得出結果.【詳解】因為數(shù)列是等比數(shù)列,由,得,所以,因此.故選:C.9、B【解析】求得中的取值范圍,由此確定充分、必要條件.【詳解】,,所以“”是“”的充要條件.故選:B10、C【解析】設圓的半徑為,根據(jù)已知條件可得出關于的方程,求出正數(shù)的值,即可得出拋物線的方程.【詳解】設圓的半徑為,拋物線的準線方程為,由勾股定理可得,因為,將代入拋物線方程得,可得,不妨設點,則,所以,,解得,因此,拋物線的方程為.故選:C.11、A【解析】由,可得進一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點睛】方法點睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點所在的坐標軸,設出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).12、B【解析】先證明點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標系,利用向量法求解.【詳解】因為平面平面,所以A1C1//平面ACD1,則點A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因為平面,所以平面,所以是平面一個法向量,所以平面ACD1的一個法向量為=(1,1,1),故所求的距離為.故選:B【點睛】方法點睛:求點到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】設為這3張卡片的標號相鄰的組數(shù),則的可能取值為0,1,2,利用列舉法分別求出相應的概率,由此能求出隨機變量的數(shù)學期望【詳解】解:不透明袋中裝有完全相同,標號分別為1,2,3,,8的八張卡片從中隨機取出3張,共有種,設為這3張卡片的標號相鄰的組數(shù),則的可能取值為0,1,2,的情況有:,2,,,3,,,4,,,5,,,6,,,7,,共6個,,的情況有:取,另外一個數(shù)有5種取法;取,另外一個數(shù)有4種取法;取,另外一個數(shù)有4種取法;取,另外一個數(shù)有4種取法;取,另外一個數(shù)有4種取法;取,另外一個數(shù)有4種取法;取,另外一個數(shù)有5種取法的情況一共有:,,,隨機變量的數(shù)學期望:故答案為:14、【解析】根據(jù)給定條件求出正項等比數(shù)列的公比即可計算作答.【詳解】設正項等比數(shù)列的公比為,依題意,,即,而,解得,所以.故答案為:15、或##或【解析】根據(jù)向量平行時坐標的關系和向量的模公式即可求解.【詳解】,且,設,,解得,或.故答案為:或.16、【解析】根據(jù)正弦定理,結合題意,列出方程,代入數(shù)據(jù),化簡即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)(i);(ii).【解析】(1)連接,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可證得結論成立;(2)(i)利用空間向量法可求得直線到平面的距離;(ii)利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】證明:連接,則為的中點,且,在正四棱錐中,平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示空間直角坐標系,則、、、、、、、,,設平面的法向量為,,,則,取,則,因為,則,又因為平面,所以,平面.【小問2詳解】解:(i),所以,直線到平面的距離為.(ii),則,因此,直線與平面所成角的正弦值為.18、(1);(2)相切,證明過程、圖形見解析.【解析】(1)根據(jù)拋物線的準線方程,結合拋物線標準方程進行求解即可;(2)設出直線AB的方程與拋物線方程聯(lián)立,利用一元二次方程根與系數(shù)關系,結合圓的性質進行求解即可.【小問1詳解】因為拋物線C的頂點在坐標原點,準線方程為,所以設拋物線C的標準方程為:,因為該拋物線的準線方程為,所以有,所以拋物線C的標準方程;小問2詳解】以弦AB為直徑的圓與直線相切,理由如下:因為AB是過拋物線C的焦點F的弦,所以直線AB的斜率不為零,設橢圓的焦點坐標為,設直線AB的方程為:,則有,設,則有,因此,所以弦AB為直徑的圓的圓心的橫坐標為:,以弦AB為直徑的圓的直徑為:所以弦AB為直徑的圓的半徑,以弦AB為直徑的圓的圓心到準線的距離為:,所以以弦AB為直徑的圓與直線相切.【點睛】關鍵點睛:利用一元二次方程的根與系數(shù)關系是解題的關鍵.19、【解析】由題設A是的真子集,結合已知集合的描述列不等式求a的范圍.【詳解】由“”是“”的充分不必要條件,即A是的真子集,又,,所以,可得,則實數(shù)a的取值范圍為20、(1)證明見解析.(2)存在點,為線段中點【解析】(1)根據(jù)線面垂直的判定定理和面面垂直的判定定理,即可證得平面平面;(2)以為坐標原點建立如圖所示的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)在直角梯形中,作于于,連接,則,,則,,則,在直角中,可得,則,所以,故,且折疊后與位置關系不變.又因為平面平面,且平面平面,所以平面,因為平面,所以平面平面.(2)在中,由,為的中點,可得.又因為平面平面,且平面平面,所以平面,則以為坐標原點建立如圖所示的空間直角坐標系,則,,,則,,設平面的法向量為,則,令,可得平面的法向量為,假設存在點使平面與平面所成角的余弦值為,且(),∵,∴,故,又,∴,又由,設平面的法向量為,可得,令得,∴,解得,因此存在點且為線段中點時使平面與平面所成角的余弦值為.本題考查了面面垂直的判定與證明,以及空間角的求解及應用,意在考查學生的空間想象能力和邏輯推理能力,解答中熟記線面位置關系的判定定理和性質定理,通過嚴密推理是線面位置關系判定的關鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.21、(1);(2)沒有.【解析】(1)設機器鼠位置為點,由題意可得,即,可得的軌跡為以、為焦點的雙曲線的右支,分析取值,即得解雙曲線的方程,由可得P點坐標.(2)轉化機器鼠與直線最近的距離為與直線平行的直線與雙曲線相切時,平行線間的距離,設的方程為,與雙曲線聯(lián)立,求出的值,再利用平行線間的距離公式,即得解【詳解】(1)設機器鼠位置為點,、,由題意可得,即,可得的軌跡為以、為焦點的雙曲線的右支,設其方程為:(,),則、、,則的軌跡方程為:(),時刻時,,即,可得機器鼠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論