版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市鐵路第一中學2025屆數(shù)學高一上期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在實數(shù)的原有運算法則中,補充定義新運算“”如下:當時,;當時,,已知函數(shù),則滿足的實數(shù)的取值范圍是A. B.C. D.2.當生物死后,它體內(nèi)的碳14含量會按確定的比率衰減(稱為衰減率),大約每經(jīng)過5730年衰減為原來的一半.2010年考古學家對良渚古城水利系統(tǒng)中一條水壩的建筑材料草裹泥)上提取的草莖遺存進行碳14檢測,檢測出碳14的殘留量約為初始量的,以此推斷此水壩建成的年代大概是公元前()(參考數(shù)據(jù):,)A.年 B.年C.年 D.年3.若關(guān)于x的不等式的解集為,則關(guān)于函數(shù),下列說法不正確的是()A.在上單調(diào)遞減 B.有2個零點,分別為1和3C.在上單調(diào)遞增 D.最小值是4.若函數(shù),則的單調(diào)遞增區(qū)間為()A. B.C. D.5.已知函數(shù),,則()A.的最大值為 B.在區(qū)間上只有個零點C.的最小正周期為 D.為圖象的一條對稱軸6.設(shè)全集,集合,則()A. B.C. D.7.將函數(shù)圖象向左平移個單位,所得函數(shù)圖象的一條對稱軸的方程是A. B.C. D.8.的外接圓的圓心為O,半徑為1,若,且,則的面積為()A. B.C. D.19.若不等式的解集為,那么不等式的解集為()A. B.或C. D.或10.函數(shù)的定義域為()A.B.且C.且D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)y=的單調(diào)遞增區(qū)間是____.12.若“”是真命題,則實數(shù)的最小值為_____________.13.命題“,使”是真命題,則的取值范圍是________14.若在上恒成立,則k的取值范圍是______.15.已知且,函數(shù)的圖象恒經(jīng)過定點,正數(shù)、滿足,則的最小值為____________.16.①函數(shù)y=sin2x的單調(diào)增區(qū)間是[],(k∈Z);②函數(shù)y=tanx在它的定義域內(nèi)是增函數(shù);③函數(shù)y=|cos2x|的周期是π;④函數(shù)y=sin()是偶函數(shù);其中正確的是____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別為,的面積為,已知,,(1)求值;(2)判斷的形狀并求△的面積18.已知函數(shù).(1)請用“五點法”畫出函數(shù)在上的圖象(先列表,再畫圖);(2)求在上的值域;(3)求使取得最值時的取值集合,并求出最值19.筒車是我國古代發(fā)哪的一種水利灌溉工具,因其經(jīng)濟環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用.明朝科學家徐光啟在《農(nóng)政全書》中描繪了筒車的工作原理.如圖1是一個半徑為R(單位:米),有24個盛水筒的筒車,按逆時針方向勻速旋轉(zhuǎn),轉(zhuǎn)一周需要120秒,為了研究某個盛水筒P離水面高度h(單位,米)與時間t(單位:秒)的變化關(guān)系,建立如圖2所示的平面直角坐標系xOy.已知時P的初始位置為點(此時P裝滿水).(1)P從出發(fā)到開始倒水入槽需要用時40秒,求此刻P距離水面的高度(結(jié)果精確到0.1);(2)記與P相鄰的下一個盛水筒為Q,在簡車旋轉(zhuǎn)一周的過程中,求P與Q距離水面高度差的最大值(結(jié)果精確到0.1)參考數(shù)據(jù):,,,20.已知函數(shù)(1)判斷在區(qū)間上的單調(diào)性,并用定義證明;(2)求在區(qū)間上的值域21.某班級欲在半徑為1米的圓形展板上做班級宣傳,設(shè)計方案如下:用四根不計寬度的銅條將圓形展板分成如圖所示的形狀,其中正方形ABCD的中心在展板圓心,正方形內(nèi)部用宣傳畫裝飾,若銅條價格為10元/米,宣傳畫價格為20元/平方米,展板所需總費用為銅條的費用與宣傳畫的費用之和(1)設(shè),將展板所需總費用表示成的函數(shù);(2)若班級預算為100元,試問上述設(shè)計方案是否會超出班級預算?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】當時,;當時,;所以,易知,在單調(diào)遞增,在單調(diào)遞增,且時,,時,,則在上單調(diào)遞增,所以得:,解得,故選C點睛:新定義的題關(guān)鍵是讀懂題意,根據(jù)條件,得到,通過單調(diào)性分析,得到在上單調(diào)遞增,解不等式,要符合定義域和單調(diào)性的雙重要求,則,解得答案2、B【解析】根據(jù)碳14的半衰期為5730年,即每5730年含量減少一半,設(shè)原來的量為,經(jīng)過年后變成了,即可列出等式求出的值,即可求解.【詳解】解:根據(jù)題意可設(shè)原來的量為,經(jīng)過年后變成了,即,兩邊同時取對數(shù),得:,即,,,以此推斷此水壩建成的年代大概是公元前年.故選:B.3、C【解析】根據(jù)二次函數(shù)性質(zhì)逐項判斷可得答案.【詳解】方程的兩個根是1和3,則函數(shù)圖象的對稱軸方程是,是開口向上的拋物線,A正確;C錯誤;函數(shù)的兩個零點是1和3,因此B正確;又,,,即,為最小值,D正確故選:C.4、A【解析】令,則,根據(jù)解析式,先求出函數(shù)定義域,結(jié)合二次函數(shù)以及對數(shù)函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】令,則,由真數(shù)得,∵拋物線的開口向下,對稱軸,∴在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,又∵在定義域上單調(diào)遞減,由復合函數(shù)的單調(diào)性可得:的單調(diào)遞增區(qū)間為.故選:A.5、D【解析】首先利用二倍角公式及輔助角公式將函數(shù)化簡,再結(jié)合正弦函數(shù)的性質(zhì)計算可得;【詳解】解:函數(shù),可得的最大值為2,最小正周期為,故A、C錯誤;由可得,即,可知在區(qū)間上的零點為,故B錯誤;由,可知為圖象的一條對稱軸,故D正確故選:D6、A【解析】根據(jù)補集定義計算.【詳解】因為集合,又因為全集,所以,.故選:A.【點睛】本題考查補集運算,屬于簡單題.7、C【解析】將函數(shù)圖象向左平移個單位得到,令,當時得對稱軸為考點:三角函數(shù)性質(zhì)8、B【解析】由,利用向量加法的幾何意義得出△ABC是以A為直角的直角三角形,又|,從而可求|AC|,|AB|的值,利用三角形面積公式即可得解【詳解】由于,由向量加法的幾何意義,O為邊BC中點,∵△ABC的外接圓的圓心為O,半徑為1,∴三角形應該是以BC邊為斜邊的直角三角形,∠BAC=,斜邊BC=2,又∵∴|AC|=1,|AB|=,∴S△ABC=,故選B.【點睛】本題主要考查了平面向量及應用,三角形面積的求法,屬于基礎(chǔ)題9、C【解析】根據(jù)題意,直接求解即可.【詳解】根據(jù)題意,由,得,因為不等式的解集為,所以由,知,解得,故不等式的解集為.故選:C.10、C【解析】根據(jù)給定函數(shù)有意義直接列出不等式組,解不等式組作答.【詳解】依題意,,解得且,所以的定義域為且.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設(shè)函數(shù),再利用復合函數(shù)的單調(diào)性原理求解.【詳解】解:由題得函數(shù)的定義域為.設(shè)函數(shù),因為函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,函數(shù)是單調(diào)遞減函數(shù),由復合函數(shù)的單調(diào)性得函數(shù)y=的單調(diào)遞增區(qū)間為.故答案為:12、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應填:1.考點:1、命題;2、正切函數(shù)的性質(zhì).13、【解析】可根據(jù)題意得出“,恒成立”,然后根據(jù)即可得出結(jié)果.【詳解】因為命題“,使”是真命題,所以,恒成立,即恒成立,因為當時,,所以,的取值范圍是,故答案為:.14、【解析】首先參變分離得到在上恒成立,接著分段求出函數(shù)的最小值,最后給出k的取值范圍即可.【詳解】因為在上恒成立,所以在上恒成立,當時,,所以,所以,所以;當時,,所以,所以,所以;綜上:k的取值范圍為.故答案為:.【點睛】本題是含參數(shù)的不等式恒成立問題,此類問題都可轉(zhuǎn)化為最值問題,即f(x)<a恒成立?a>f(x)max,f(x)>a恒成立?a<f(x)min.15、9【解析】由指數(shù)函數(shù)的性質(zhì)可得函數(shù)的圖象恒經(jīng)過定點,進而可得,然后利用基本不等式中“1”的妙用即可求解.【詳解】解:因為函數(shù)的圖象恒經(jīng)過定點,所以,又、為正數(shù),所以,當且僅當,即時等號成立,所以的最小值為9.故答案為:9.16、①④【解析】①由,解得.可得函數(shù)單調(diào)增區(qū)間;②函數(shù)在定義域內(nèi)不具有單調(diào)性;③由,即可得出函數(shù)的最小正周期;④利用誘導公式可得函數(shù),即可得出奇偶性【詳解】解:①由,解得.可知:函數(shù)的單調(diào)增區(qū)間是,,,故①正確;②函數(shù)在定義域內(nèi)不具有單調(diào)性,故②不正確;③,因此函數(shù)的最小正周期是,故③不正確;④函數(shù)是偶函數(shù),故④正確其中正確的是①④故答案為:①④【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)是等腰三角形,其面積為【解析】(1)由結(jié)合正弦面積公式及余弦定理得到,進而得到結(jié)果;(2)由結(jié)合內(nèi)角和定理可得分兩類討論即可.試題解析:(1),由余弦定理得,(2)即或(?。┊敃r,由第(1)問知,是等腰三角形,(ⅱ)當時,由第(1)問知,又,矛盾,舍.綜上是等腰三角形,其面積為點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中已知和所求,在圖形中標出來,然后確定轉(zhuǎn)化的方向.第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化.第三步:求結(jié)果.18、(1)答案見解析(2)(3)答案見解析【解析】(1)取五個值,列表描點連線即可得出答案;(2)根據(jù)圖象求出的范圍,即可得出答案;(3)根據(jù)正弦函數(shù)最值即可得出答案.【小問1詳解】列表如下:10-10020-20在直角坐標系中描點連線,如圖所示:【小問2詳解】當時,,所以,所以.所以在上的值域為【小問3詳解】當時,取最大值2令,則當時,取最小值-2令,則所以使取得最大值時的取值集合為,且最大值為2取得最小值時的取值集合為,且最大值為-2.19、(1)m(2)m【解析】(1)根據(jù)題意P從出發(fā)到開始倒水入槽用時40秒,可知線段OA按逆時針方向旋轉(zhuǎn)了,由,可求圓的半徑,由題意可知以O(shè)A為終邊的角為,由此即可求出P距離水面的高度;(2)由題意可知P轉(zhuǎn)動的角速度為rad/s,易知P開始轉(zhuǎn)動t秒后距離水面的高度的解析式,設(shè)P,Q兩個盛水筒分別用點B,C表示,易知,點C相對于點B始終落后rad,求出Q距離水面的高度,可得則P,Q距離水面的高度差,再根據(jù)三角函數(shù)的性質(zhì),即可求出結(jié)果.【小問1詳解】解:由于筒車轉(zhuǎn)一周需要120秒,所以P從出發(fā)到開始倒水入槽的40秒,線段OA按逆時針方向旋轉(zhuǎn)了,因為A點坐標為,得,以O(shè)A為終邊的角為,所以P距離水面的高度m【小問2詳解】解:由于筒車轉(zhuǎn)一周需要120秒,可知P轉(zhuǎn)動的角速度為rad/s,又以O(shè)A為終邊的角為,則P開始轉(zhuǎn)動t秒后距離水面的高度,如圖,P,Q兩個盛水筒分別用點B,C表示,則,點C相對于點B始終落后rad,此時Q距離水面的高度則P,Q距離水面的高度差,利用,可得當或,即或時,最大值為所以,筒車旋轉(zhuǎn)一周的過程中,P與Q距離水面高度差的最大值約為m20、(1)在區(qū)間上單調(diào)遞增,證明見解析(2)【解析】(1)利用定義法,設(shè)出,通過做差比較的大小,即可證明;(2)根據(jù)第(1)問得到在區(qū)間上的單調(diào)性,在區(qū)間直接賦值即可求解值域.【小問1詳解】在區(qū)間上單調(diào)遞增,證明如下:,且,有因為,且,所以,于是,即故在區(qū)間上單調(diào)遞增【小問2詳解】由第(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度安防系統(tǒng)集成與運維服務(wù)合同3篇
- 二零二五年度2025版智慧水務(wù)PPP合作開發(fā)項目合同范本3篇
- 二零二五年度企業(yè)內(nèi)部圖書采購及借閱服務(wù)合同3篇
- 2024年股票策略定制合同
- 2024年藝術(shù)家培養(yǎng)合同:藝術(shù)人才委托培養(yǎng)協(xié)議3篇
- 2024年設(shè)備采購合同:技術(shù)規(guī)格與交付時間表3篇
- 二零二五年廣告宣傳創(chuàng)意版權(quán)保護協(xié)議3篇
- 2024年設(shè)備保養(yǎng)及維修合同
- 2025版建材城租賃合同附質(zhì)量檢測及售后服務(wù)協(xié)議3篇
- 2025年度智慧農(nóng)業(yè)技術(shù)應用 XXX合同協(xié)議補充協(xié)議3篇
- 廣東某監(jiān)理公司檢測儀器設(shè)備管理規(guī)定
- 2023財務(wù)部年度工作總結(jié)(7篇)
- ZL50型輪胎裝載機液壓系統(tǒng)
- 在線投票管理系統(tǒng)的開題報告
- 媒介融合概論
- 2023-2024學年廣東省深圳市小學數(shù)學五年級上冊期末評估試卷
- 新求精中級I聽力原文
- 抽油機井示功圖匯總課件
- 煤礦安全管理機構(gòu)結(jié)構(gòu)圖
- 《蘭亭序》中楷毛筆臨摹字帖可打印
- 免疫學(全套課件)
評論
0/150
提交評論