版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆白城市重點中學(xué)高一上數(shù)學(xué)期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.不等式恒成立,則的取值范圍為()A. B.或C. D.2.已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實數(shù)的取值范圍為()A. B.C. D.3.函數(shù)f(x)=A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)4.下列各組函數(shù)與的圖象相同的是()A. B.C. D.5.在中,,,若點滿足,則()A. B.C. D.6.下列關(guān)系式中,正確的是A. B.C. D.7.曲線與直線在軸右側(cè)的交點按橫坐標(biāo)從小到大依次記為,,,,,…,則等于A. B.2C.3 D.8.設(shè),,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.方程的解所在的區(qū)間是A B.C. D.10.函數(shù)的單調(diào)減區(qū)間為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的圖上存在一點,函數(shù)的圖象上存在一點,恰好使兩點關(guān)于直線對稱,則滿足上述要求的實數(shù)的取值范圍是___________12.已知函數(shù)的圖象過原點,且無限接近直線,但又不與該直線相交,則______13.已知α∈.若冪函數(shù)f(x)=xα為奇函數(shù),且在(0,+∞)上遞減,則=______.14.設(shè)函數(shù)即_____15.唐代李皋發(fā)明了“槳輪船”,這種船是原始形態(tài)的輪船,是近代明輪船航行模式之先導(dǎo),如圖,某槳輪船的輪子的半徑為,他以的角速度逆時針旋轉(zhuǎn),輪子外邊沿有一點P,點P到船底的距離是H(單位:m),輪子旋轉(zhuǎn)時間為t(單位:s).當(dāng)時,點P在輪子的最高處.(1)當(dāng)點P第一次入水時,__________;(2)當(dāng)時,___________.16.已知角的終邊經(jīng)過點,則的值是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的最小正周期以及對稱軸方程;(2)設(shè)函數(shù),求在上的值域.18.已知函數(shù),,設(shè)(其中表示中的較小者).(1)在坐標(biāo)系中畫出函數(shù)的圖像;(2)設(shè)函數(shù)的最大值為,試判斷與1的大小關(guān)系,并說明理由.(參考數(shù)據(jù):,,)19.某自然資源探險組織試圖穿越某峽谷,但峽谷內(nèi)被某致命昆蟲所侵?jǐn)_,為了穿越這個峽谷,該探險組織進行了詳細(xì)的調(diào)研,若每平方米的昆蟲數(shù)量記為昆蟲密度,調(diào)研發(fā)現(xiàn),在這個峽谷中,昆蟲密度是時間(單位:小時)的一個連續(xù)不間斷的函數(shù)其函數(shù)表達(dá)式為,其中時間是午夜零點后的小時數(shù),為常數(shù).(1)求的值;(2)求出昆蟲密度的最小值和出現(xiàn)最小值的時間;(3)若昆蟲密度不超過1250只/平方米,則昆蟲的侵?jǐn)_是非致命性的,那么在一天24小時內(nèi)哪些時間段,峽谷內(nèi)昆蟲出現(xiàn)非致命性的侵?jǐn)_.20.命題p:方程x2+x+m=0有兩個負(fù)數(shù)根;命題q:任意實數(shù)x∈R,mx2-2mx+1>0成立;若p與q都是真命題,求m取值范圍.21.某品牌手機公司的年固定成本為50萬元,每生產(chǎn)1萬部手機需增加投入20萬元,該公司一年內(nèi)生產(chǎn)萬部手機并全部銷售完當(dāng)年銷售量不超過40萬部時,銷售1萬部手機的收入萬元;當(dāng)年銷售量超過40萬部時,銷售1萬部手機的收入萬元(1)寫出年利潤萬元關(guān)于年銷售量萬部的函數(shù)解析式;(2)年銷售量為多少萬部時,利潤最大,并求出最大利潤.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先討論系數(shù)為0的情況,再結(jié)合二次函數(shù)的圖像特征列不等式即可.【詳解】不等式恒成立,當(dāng)時,顯然不恒成立,所以,解得:.故選:A.2、B【解析】根據(jù)二次函數(shù)的圖象與性質(zhì),可知區(qū)間在對稱軸的右面,即,即可求得答案.【詳解】函數(shù)為對稱軸開口向上的二次函數(shù),在區(qū)間上是單調(diào)增函數(shù),區(qū)間在對稱軸的右面,即,實數(shù)的取值范圍為.故選B.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),明確二次函數(shù)的對稱軸、開口方向與函數(shù)的單調(diào)性的關(guān)系是解題關(guān)鍵.3、C【解析】,所以零點在區(qū)間(0,1)上考點:零點存在性定理4、B【解析】根據(jù)相等函數(shù)的定義即可得出結(jié)果.【詳解】若函數(shù)與的圖象相同則與表示同一個函數(shù),則與的定義域和解析式相同.A:的定義域為R,的定義域為,故排除A;B:,與的定義域、解析式相同,故B正確;C:的定義域為R,的定義域為,故排除C;D:與的解析式不相同,故排除D.故選:B5、C【解析】由題可得,進一步化簡可得.【詳解】,,.故選:C.6、C【解析】不含任何元素的集合稱為空集,即為,而代表由單元素0組成的集合,所以,而與的關(guān)系應(yīng)該是.故選C.7、B【解析】曲線與直線在軸右側(cè)的交點按橫坐標(biāo)從小到大依次記為,曲線與直線在軸右側(cè)的交點按橫坐標(biāo)轉(zhuǎn)化為根,解簡單三角方程可得對應(yīng)的橫坐標(biāo)分別為,,故選B.【思路點睛】本題主要考查三角函數(shù)的圖象以及簡單的三角方程,屬于中檔題.解答本題的關(guān)鍵是將曲線與直線在軸右側(cè)的交點按橫坐標(biāo)轉(zhuǎn)化為根,可得或,令取特殊值即可求得,從而可得.8、D【解析】分別取特殊值驗證充分性和必要性不滿足,即可得到答案.【詳解】充分性:取,滿足“”,但是“”不成立,即充分性不滿足;必要性:取,滿足“”,但是“”不成立,即必要性不滿足;所以“”是“”的既不充分也不必要條件.故選:D9、C【解析】設(shè),則由指數(shù)函數(shù)與一次函數(shù)的性質(zhì)可知,函數(shù)與的上都是遞增函數(shù),所以在上單調(diào)遞增,故函數(shù)最多有一個零點,而,,根據(jù)零點存在定理可知,有一個零點,且該零點處在區(qū)間內(nèi),故選答案C.考點:函數(shù)與方程.10、A【解析】先求得函數(shù)的定義域,利用二次函數(shù)的性質(zhì)求得函數(shù)的單調(diào)區(qū)間,結(jié)合復(fù)合函數(shù)單調(diào)性的判定方法,即可求解.【詳解】由不等式,即,解得,即函數(shù)的定義域為,令,可得其圖象開口向下,對稱軸的方程為,當(dāng)時,函數(shù)單調(diào)遞增,又由函數(shù)在定義域上為單調(diào)遞減函數(shù),結(jié)合復(fù)合函數(shù)的單調(diào)性的判定方法,可得函數(shù)的單調(diào)減區(qū)間為.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】函數(shù)g(x)=lnx的反函數(shù)為,若函數(shù)f(x)的圖象上存在一點P,函數(shù)g(x)=lnx的圖象上存在一點Q,恰好使P、Q兩點關(guān)于直線y=x對稱,則函數(shù)g(x)=lnx的反函數(shù)圖象與f(x)圖象有交點,即在x∈R上有解,,∵x∈R,∴∴即.三、12、##0.75【解析】根據(jù)條件求出,,再代入即可求解.【詳解】因為的圖象過原點,所以,即.又因為的圖象無限接近直線,但又不與該直線相交,所以,,所以,所以故答案為:13、-1【解析】根據(jù)冪函數(shù),當(dāng)為奇數(shù)時,函數(shù)為奇函數(shù),時,函數(shù)在(0,+∞)上遞減,即可得出答案.【詳解】解:∵冪函數(shù)f(x)=xα為奇函數(shù),∴可取-1,1,3,又f(x)=xα在(0,+∞)上遞減,∴α<0,故=-1.故答案為:-1.14、-1【解析】結(jié)合函數(shù)的解析式求解函數(shù)值即可.【詳解】由題意可得:,則.【點睛】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值15、①.②.##【解析】算出點從最高點到第一次入水的圓心角,即可求出對應(yīng)時間;由題意求出關(guān)于的表達(dá)式,代值運算即可求出對應(yīng).【詳解】如圖所示,當(dāng)?shù)谝淮稳胨畷r到達(dá)點,由幾何關(guān)系知,又圓的半徑為3,故,此時輪子旋轉(zhuǎn)的圓心角為:,故;由題可知,即,當(dāng)時,.故答案為:;16、##【解析】根據(jù)三角函數(shù)定義得到,,進而得到答案.【詳解】角的終邊經(jīng)過點,,,.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正同期為,對稱軸方程為(2)【解析】(1)利用三角函數(shù)的恒等變換公式將化為只含有一個三角函數(shù)形式,即可求得結(jié)果;(2)將展開化簡,然后采用整體處理的方法,求得答案.【小問1詳解】,所以的最小正同期為.令,得對稱軸方程為.【小問2詳解】由題意可知,因為,所以,故,所以,故在上的值域為.18、(1)見解析;(2)見解析.【解析】(1)根據(jù)(其中表示中的較小者),即可畫出函數(shù)的圖像;(2)由題意可知,為函數(shù)與圖像交點的橫坐標(biāo),即,設(shè),根據(jù)零點存在定理及函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,可得有唯一零點,再由函數(shù)在上單調(diào)遞減,即可得證.試題解析:(1)作出函數(shù)的圖像如下:(2)由題意可知,為函數(shù)與圖像交點的橫坐標(biāo),且,∴.設(shè),易知即為函數(shù)零點,∵,,∴,又∵函數(shù)在上單調(diào)遞增,且為連續(xù)曲線,∴有唯一零點∵函數(shù)在上單調(diào)遞減,∴,即.19、(1)(2)昆蟲密度的最小值為0,出現(xiàn)最小值的時間為和(3)至至【解析】(1)由題意得,解出即可;(2)將看成一個整體,將函數(shù)轉(zhuǎn)化為二次函數(shù),根據(jù)二次函數(shù)的單調(diào)性即可得出結(jié)論;(3)解不等式即可得出結(jié)論【詳解】解:(1)因為它是一個連續(xù)不間斷的函數(shù),所以當(dāng)時,得到,即;(2)當(dāng)時,,,則當(dāng)時,達(dá)到最小值0,,解得,所以在和時,昆蟲密度達(dá)到最小值,最小值為0;(3)時,令,得,即,即,即,解得,,因為,令得,令得所以,所以,在至至內(nèi),峽谷內(nèi)昆蟲出現(xiàn)非致命性的侵?jǐn)_【點睛】本題主要考查分段函數(shù)在實際問題中的應(yīng)用,同時考查了三角函數(shù)的應(yīng)用,屬于中檔題20、【解析】根據(jù)判別式以及韋達(dá)定理即可求解.【詳解】對于有兩個負(fù)數(shù)根(可以為重根),即,并且由韋達(dá)定理,∴;對于恒成立,當(dāng)時,符合題意;當(dāng)時,則必定有且,得,所以;若p與q都是真命題,則.21、(1);(2)年銷售量為45萬部時,最大利潤為7150萬元.【解析】(1)依題意,分和兩段分別求利潤=收入-成本,即得結(jié)果
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 污水課程設(shè)計紫外消毒
- 數(shù)字電路ic課程設(shè)計
- 教育培訓(xùn)行業(yè)教學(xué)方法培訓(xùn)體驗
- 電子課程設(shè)計網(wǎng)課答案
- 稅務(wù)工作總結(jié)制度建設(shè)與規(guī)范化監(jiān)督
- 急救護理工作總結(jié)
- 貸款經(jīng)理工作總結(jié)
- 電信通訊科技行業(yè)技術(shù)分析
- 旅游行業(yè)促銷活動總結(jié)
- 酒店用品銷售工作總結(jié)
- 搶工措施方案
- 數(shù)值分析上機題(matlab版)(東南大學(xué))
- 93江蘇省宿遷市泗洪縣2023-2024學(xué)年八年級上學(xué)期期末英語試題()
- 教學(xué)能力大賽決賽獲獎-教學(xué)實施報告-(完整圖文版)
- 亞朵酒店管理手冊
- 高一期末家長會課件
- 2024年航空職業(yè)技能鑒定考試-航空乘務(wù)員危險品歷年考試高頻考點試題附帶答案
- 醫(yī)院禁毒行動方案
- 設(shè)立影視服務(wù)公司商業(yè)計劃書
- 《流行性腦脊髓膜炎》課件
- 學(xué)生公寓物業(yè)服務(wù)方案投標(biāo)方案(技術(shù)方案)
評論
0/150
提交評論