![2025屆昭通市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末考試模擬試題含解析_第1頁(yè)](http://file4.renrendoc.com/view12/M09/14/02/wKhkGWcSnTyAdwicAAG9C318ZI4526.jpg)
![2025屆昭通市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末考試模擬試題含解析_第2頁(yè)](http://file4.renrendoc.com/view12/M09/14/02/wKhkGWcSnTyAdwicAAG9C318ZI45262.jpg)
![2025屆昭通市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末考試模擬試題含解析_第3頁(yè)](http://file4.renrendoc.com/view12/M09/14/02/wKhkGWcSnTyAdwicAAG9C318ZI45263.jpg)
![2025屆昭通市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末考試模擬試題含解析_第4頁(yè)](http://file4.renrendoc.com/view12/M09/14/02/wKhkGWcSnTyAdwicAAG9C318ZI45264.jpg)
![2025屆昭通市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末考試模擬試題含解析_第5頁(yè)](http://file4.renrendoc.com/view12/M09/14/02/wKhkGWcSnTyAdwicAAG9C318ZI45265.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆昭通市重點(diǎn)中學(xué)數(shù)學(xué)高二上期末考試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的準(zhǔn)線方程是A.x=1 B.x=-1C. D.2.已知橢圓:的左、右焦點(diǎn)為,,上頂點(diǎn)為P,則()A.為銳角三角形 B.為鈍角三角形C.為直角三角形 D.,,三點(diǎn)構(gòu)不成三角形3.已知三棱柱的所有棱長(zhǎng)均為2,平面,則異面直線,所成角的余弦值為()A. B.C. D.4.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.5.如圖,在直三棱柱中,D為棱的中點(diǎn),,,,則異面直線CD與所成角的余弦值為()A. B.C. D.6.已知等差數(shù)列為其前項(xiàng)和,且,且,則()A.36 B.117C. D.137.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-138.已知函數(shù),若存在唯一的零點(diǎn),且,則的取值范圍是A. B.C. D.9.如圖,在棱長(zhǎng)為1的正方體中,M是的中點(diǎn),則點(diǎn)到平面MBD的距離是()A. B.C. D.10.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或11.已知在平面直角坐標(biāo)系中,圓的方程為,直線過(guò)點(diǎn)且與直線垂直.若直線與圓交于兩點(diǎn),則的面積為A.1 B.C.2 D.12.命題“若,則”的否命題是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:平面上一矩形ABCD的對(duì)角線AC與邊AB和AD所成角分別為,則,若把它推廣到空間長(zhǎng)方體中,體對(duì)角線與平面,平面,平面所成的角分別為,則可以類(lèi)比得到的結(jié)論為_(kāi)__________________.14.如圖,橢圓的左右焦點(diǎn)為,,以為圓心的圓過(guò)原點(diǎn),且與橢圓在第一象限交于點(diǎn),若過(guò)、的直線與圓相切,則直線的斜率______;橢圓的離心率______.15.在中,,,,則__________.16.設(shè)是同一個(gè)半徑為4的球的球面上四點(diǎn),為等邊三角形且其面積為,則三棱錐體積的最大值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)年月初,浙江杭州、寧波、紹興三地相繼爆發(fā)新冠肺炎疫情.疫情期間口罩需求量大增,某醫(yī)療器械公司開(kāi)始生產(chǎn)口罩,并且對(duì)所生產(chǎn)口罩的質(zhì)量按指標(biāo)測(cè)試分?jǐn)?shù)進(jìn)行劃分,其中分?jǐn)?shù)不小于的為合格品,否則為不合格品,現(xiàn)隨機(jī)抽取件口罩進(jìn)行檢測(cè),其結(jié)果如表:測(cè)試分?jǐn)?shù)數(shù)量(1)根據(jù)表中數(shù)據(jù),估計(jì)該公司生產(chǎn)口罩的不合格率;(2)若用分層抽樣的方式按是否合格從所生產(chǎn)口罩中抽取件,再?gòu)倪@件口罩中隨機(jī)抽取件,求這件口罩全是合格品的概率18.(12分)已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,橢圓上的動(dòng)點(diǎn)到焦點(diǎn)的最大距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)作一條不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),弦的中垂線交軸于,當(dāng)變化時(shí),是否為定值?若是,定值為多少?19.(12分)已知函數(shù).(1)證明:;(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.20.(12分)如圖,在正方體中,E,F(xiàn),G,H,K,L分別是AB,,,,,DA各棱的中點(diǎn).(1)求證:E,F(xiàn),G,H,K,L共面:(2)求證:平面EFGHKL;(3)求與平面EFGHKL所成角的余弦值.21.(12分)已知點(diǎn),圓.(1)若直線l過(guò)點(diǎn)M,且被圓C截得的弦長(zhǎng)為,求直線l的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)N在圓C上運(yùn)動(dòng),線段的中點(diǎn)為P,求點(diǎn)P的軌跡方程.22.(10分)已知點(diǎn),橢圓:離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過(guò)點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先把拋物線方程整理成標(biāo)準(zhǔn)方程,進(jìn)而求得p,再根據(jù)拋物線性質(zhì)得出準(zhǔn)線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開(kāi)口向上,∴準(zhǔn)線方程是y=﹣故答案為C【點(diǎn)睛】本題主要考查拋物線的標(biāo)準(zhǔn)方程和簡(jiǎn)單性質(zhì).屬基礎(chǔ)題2、A【解析】根據(jù)題意求得,要判斷的形狀,只需要看是什么角即可,利用余弦定理判斷,從而可得結(jié)論.【詳解】解:由橢圓:,得,則,則,所以且為銳角,因?yàn)?,所以銳角,所以為銳角三角形.故選:A.3、A【解析】建立空間直角坐標(biāo)系,利用向量法求解【詳解】以為坐標(biāo)原點(diǎn),平面內(nèi)過(guò)點(diǎn)且垂直于的直線為軸,所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖所示,則,,,,∴,,∴,∴異面直線,所成角的余弦值為.故選:A4、A【解析】根據(jù)等差數(shù)列的通項(xiàng)公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A5、A【解析】以C為坐標(biāo)原點(diǎn),分別以,,方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.運(yùn)用異面直線的空間向量求解方法,可求得答案.【詳解】解:以C為坐標(biāo)原點(diǎn),分別以,,的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系.由已知可得,,,,則,,所以.又因?yàn)楫惷嬷本€所成的角的范圍為,所以異面直線與所成角的余弦值為.故選:A.6、B【解析】根據(jù)等差數(shù)列下標(biāo)的性質(zhì),,進(jìn)而根據(jù)條件求出,然后結(jié)合等差數(shù)列的求和公式和下標(biāo)性質(zhì)求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.7、A【解析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內(nèi)切,從而可求出結(jié)果.【詳解】因?yàn)閳A,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以?xún)蓤A內(nèi)切,因此,即,解得.故選:A.8、C【解析】當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)和,不滿(mǎn)足題意,舍去;當(dāng)時(shí),,令,得或.時(shí),;時(shí),;時(shí),,且,此時(shí)在必有零點(diǎn),故不滿(mǎn)足題意,舍去;當(dāng)時(shí),時(shí),;時(shí),;時(shí),,且,要使得存在唯一的零點(diǎn),且,只需,即,則,選C考點(diǎn):1、函數(shù)的零點(diǎn);2、利用導(dǎo)數(shù)求函數(shù)的極值;3、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性9、A【解析】等體積法求解點(diǎn)到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點(diǎn)E,連接ME,由三線合一得:ME⊥BD,則,故,設(shè)到平面MBD的距離是,則,解得:,故點(diǎn)到平面MBD的距離是.故選:A10、D【解析】設(shè)圓心坐標(biāo),由點(diǎn)到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因?yàn)閳A與直線相切,所以由點(diǎn)到直線的距離公式可得,解得或.因此圓的方程為或.【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題11、A【解析】∵圓的方程為,即,∴圓的圓心為,半徑為2.∵直線過(guò)點(diǎn)且與直線垂直∴直線.∴圓心到直線的距離.∴直線被圓截得的弦長(zhǎng),又∵坐標(biāo)原點(diǎn)到的距離為,∴的面積為.考點(diǎn):1、直線與圓的位置關(guān)系;2、三角形的面積公式.12、B【解析】根據(jù)原命題的否命題是條件結(jié)論都要否定【詳解】解:因?yàn)樵}的否命題是條件結(jié)論都要否定所以命題“若,則”的否命題是若,則;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先由線面角的定義得到,再計(jì)算的值即可得到結(jié)論【詳解】在長(zhǎng)方體中,連接,在長(zhǎng)方體中,平面,所以對(duì)角線與平面所成的角為,對(duì)角線與平面所成的角為,對(duì)角線與平面所成的角為,顯然,,,所以,,故答案為:14、①.②.【解析】根據(jù)直角三角形的性質(zhì)求得,由此求得,結(jié)合橢圓的定義求得離心率.【詳解】連接,由于是圓的切線,所以.在中,,所以,所以,所以直線的斜率.,根據(jù)橢圓的定義可知.故答案為:;【點(diǎn)睛】本小題主要考查橢圓的定義、橢圓的離心率,屬于中檔題.15、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因?yàn)樵谥?,,,,所以由余弦定理可得,所以,即,則故答案為:16、【解析】求出等邊的邊長(zhǎng),畫(huà)出圖形,判斷D的位置,然后求解即可.【詳解】為等邊三角形且其面積為,則,如圖所示,設(shè)點(diǎn)M為的重心,E為AC中點(diǎn),當(dāng)點(diǎn)在平面上的射影為時(shí),三棱錐的體積最大,此時(shí),,點(diǎn)M為三角形ABC的重心,,中,有,,所以三棱錐體積的最大值故答案為:【點(diǎn)睛】思路點(diǎn)睛:本題考查球的內(nèi)接多面體,棱錐的體積的求法,要求內(nèi)接三棱錐體積的最大值,底面是面積一定的等邊三角形,需要該三棱錐的高最大,故需要底面,再利用內(nèi)接球,求出高,即可求出體積的最大值,考查學(xué)生的空間想象能力與數(shù)形結(jié)合思想,及運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)由題意知分?jǐn)?shù)小于的產(chǎn)品為不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分層抽樣確定抽取的件口罩中合格產(chǎn)品和不合格產(chǎn)品的數(shù)量分別為件和件,再利用古典概型把所有基本事件種都列舉出來(lái),在判斷件口罩全是合格品的事件有種情況,即可得到答案.【小問(wèn)1詳解】在抽取的件產(chǎn)品中,不合格的口罩有(件)所以口罩為不合格品的頻率為,根據(jù)頻率可估計(jì)該公司所生產(chǎn)口罩的不合格率為【小問(wèn)2詳解】由題意所抽取件口罩中不合格的件,合格的件設(shè)件合格口罩記為,件不合格口罩記為而從件口罩中抽取件,共有共種情況,這件口罩全是合格品的事件有共種情況故件口罩全是合格品的概率為18、(1)(2)是,【解析】(1)由拋物線方程求出其焦點(diǎn)坐標(biāo),結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長(zhǎng)和其中垂線方程,再計(jì)算,由此完成證明.【小問(wèn)1詳解】拋物線的交點(diǎn)坐標(biāo)為(1,0),,又,又,∴,橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】設(shè)直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點(diǎn)坐標(biāo)為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【點(diǎn)睛】求定值問(wèn)題常見(jiàn)的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無(wú)關(guān)(2)直接推理、計(jì)算,并在計(jì)算推理的過(guò)程中消去變量,從而得到定值19、(1)證明見(jiàn)解析;(2).【解析】(1)令,求導(dǎo)得到函數(shù)的增區(qū)間為,減區(qū)間為,故,得到證明.(2),討論和兩種情況,計(jì)算函數(shù)的單調(diào)區(qū)間得到,解得答案.【詳解】(1)令,有,令可得,故函數(shù)的增區(qū)間為,減區(qū)間為,,故有.(2)由①當(dāng)時(shí),,此時(shí)函數(shù)的減區(qū)間為,沒(méi)有增區(qū)間;②當(dāng)時(shí),令可得,此時(shí)函數(shù)的增區(qū)間為,減區(qū)間為.若函數(shù)有兩個(gè)零點(diǎn),必須且,可得,此時(shí),又由,當(dāng)時(shí),由(1)有,取時(shí),顯然有,當(dāng)時(shí),故函數(shù)有兩個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)證明不等式,根據(jù)零點(diǎn)求參數(shù),意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【解析】建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo);(1)用向量的坐標(biāo)運(yùn)算證明向量共面,進(jìn)而證明點(diǎn)共面;(2)利用向量的數(shù)量積的坐標(biāo)運(yùn)算證明,即可;(3)確定平面EFGHKL的一個(gè)法向量,利用空間角度的向量計(jì)算公式求得答案.【小問(wèn)1詳解】證明:以D為原點(diǎn),分別以DA,DC,所在直線為x,y,z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長(zhǎng)為2.則,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它們過(guò)同一點(diǎn)E,所以E,F(xiàn),G,H,K,L共面.【小問(wèn)2詳解】證明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小問(wèn)3詳解】由(2)知,是平面EFGHKL的一個(gè)法向量,設(shè)與平面EFGHKL所成角為,,,.所以,所以與平面EFGHKL所成角的余弦值為.21、(1)或(2)【解析】(1)由直線被圓C截得的弦長(zhǎng)為,求得圓心到直線的距離為,分直線的斜率不存在和斜率存在兩種情況討論,結(jié)合點(diǎn)到直線的距離公式,列出方程,即可求解.(2)設(shè)點(diǎn),,根據(jù)線段的中點(diǎn)為,求得,結(jié)合在圓上,代入即可求解.【小問(wèn)1詳解】解:由題意,圓,可得圓心,半徑,因?yàn)橹本€被圓C截得的弦長(zhǎng)為,則圓心到直線的距離為,當(dāng)直線的斜率不存在時(shí),此時(shí)直線的方程為,滿(mǎn)足題意;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,即,則,解得,即,綜上可得,所求直線的方程為或.【小問(wèn)2詳解】解:設(shè)點(diǎn),因
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東理工職業(yè)學(xué)院《素描基礎(chǔ)4》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)江職業(yè)技術(shù)學(xué)院《設(shè)計(jì)表現(xiàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 常州紡織服裝職業(yè)技術(shù)學(xué)院《內(nèi)科臨床實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年中國(guó)乳酸菌行業(yè)市場(chǎng)全景分析及投資策略研究報(bào)告
- 現(xiàn)代企業(yè)人力資源管理實(shí)踐及發(fā)展趨勢(shì)分析
- 昆明藝術(shù)職業(yè)學(xué)院《生態(tài)文學(xué)欣賞》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧地質(zhì)工程職業(yè)學(xué)院《材料成型專(zhuān)業(yè)英語(yǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東勝利職業(yè)學(xué)院《經(jīng)典譯著賞析》2023-2024學(xué)年第二學(xué)期期末試卷
- 游戲化辦公未來(lái)的工作娛樂(lè)新模式
- 高中助學(xué)金申請(qǐng)書(shū)500字
- 三位數(shù)除以?xún)晌粩?shù)過(guò)關(guān)練習(xí)口算題大全附答案
- 什么叫績(jī)效考勤管理制度
- 紅樓夢(mèng)服飾文化
- 外墻噴漆施工合同協(xié)議書(shū)
- 軟件系統(tǒng)平臺(tái)項(xiàng)目實(shí)施方案
- 陜西延長(zhǎng)石油集團(tuán)礦業(yè)公司招聘筆試題庫(kù)2024
- 湖北省2024年村干部定向考試真題
- 2024年沙石材料運(yùn)輸合同
- 遼寧省大連市莊河市2023-2024學(xué)年七年級(jí)下學(xué)期期末數(shù)學(xué)試題
- 壘球教案完整版本
- 發(fā)展?jié)h語(yǔ)初級(jí)口語(yǔ)I-第11課課件
評(píng)論
0/150
提交評(píng)論