2025屆延安市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第1頁
2025屆延安市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第2頁
2025屆延安市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第3頁
2025屆延安市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第4頁
2025屆延安市重點中學數(shù)學高二上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆延安市重點中學數(shù)學高二上期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓C:的左右焦點為F1,F(xiàn)2,離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B.C. D.2.已知雙曲線C:-=1(a>b>0)的左焦點為F1,若過原點傾斜角為的直線與雙曲線C左右兩支交于M、N兩點,且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.3.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標為()A. B.C.4 D.94.已知等比數(shù)列的前n項和為,且,則()A.20 B.30C.40 D.505.在數(shù)列中,,,則()A. B.C. D.6.如下圖,邊長為2的正方體中,O是正方體的中心,M,N,T分別是棱BC,,的中點,下列說法錯誤的是()A. B.C. D.到平面MON的距離為17.設,直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.等差數(shù)列中,已知,則()A.36 B.27C.18 D.99.焦點坐標為(1,0)拋物線的標準方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y10.設是雙曲線的兩個焦點,是雙曲線上的一點,且,則的面積等于()A. B.C.24 D.4811.已知等邊三角形的一個頂點在橢圓E上,另兩個頂點位于E的兩個焦點處,則E的離心率為()A. B.C. D.12.在中,,,,若該三角形有兩個解,則范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知遞增數(shù)列共有2021項,且各項均不為零,,如果從中任取兩項,當時,仍是數(shù)列中的項,則的范圍是________________,數(shù)列的所有項和________14.過拋物線:的焦點的直線交于,兩點,若,則線段中點的橫坐標為______15.命題,恒成立是假命題,則實數(shù)a取值范圍是________________16.甲、乙兩名學生通過某次聽力測試的概率分別為和,且是否通過聽力測試相互獨立,兩人同時參加測試,其中有且只有一人能通過的概率是__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)求證:對,直線l與圓C總有兩個不同交點;(2)當時,求直線l被圓C截得的弦長18.(12分)已知數(shù)列{an}的前n項和為Sn,.(1)求數(shù)列{an}通項公式;(2)求數(shù)列的前n項和,求使不等式成立的最大整數(shù)m的值.19.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍20.(12分)設點P是曲線上的任意一點,k是該曲線在點P處的切線的斜率(1)求k的取值范圍;(2)求當k取最大值時,該曲線在點P處的切線方程21.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當點與點關于軸對稱時的面積是否達到最大?并說明理由.22.(10分)已知函數(shù),.(1)若在單調(diào)遞增,求的取值范圍;(2)若,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)橢圓的定義可得△AF1B的周長為4a,由題意求出a,結(jié)合離心率計算即可求出c,再求出b即可.【詳解】由橢圓的定義知,△AF1B的周長為,又△AF1B的周長為4,則,,,,,所以方程為,故選:A.2、C【解析】根據(jù)雙曲線和直線的對稱性,結(jié)合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進行求解即可.【詳解】設雙曲線的右焦點為F2,過原點傾斜角為的直線為,設M、N分別在第三、第一象限,由雙曲線和直線的對稱性可知:M、N兩點關于原點對稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因為,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【點睛】關鍵點睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關鍵.3、B【解析】設,,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設,,,與橢圓聯(lián)立,解得:,故選:B4、B【解析】利用等比數(shù)列的前n項和公式即可求解.【詳解】設等比數(shù)列的首項為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.5、A【解析】根據(jù)已知條件,利用累加法得到的通項公式,從而得到.【詳解】由,得,所以,所以.故選:A.6、D【解析】建立空間直角坐標系,進而根據(jù)空間向量的坐標運算判斷A,B,C;對D,算出平面MON的法向量,進而求出向量在該法向量方向上投影的絕對值,即為所求距離.【詳解】如圖建立空間直角坐標系,則.對A,,則,則A正確;對B,,則,則B正確;對C,,則C正確;對D,設平面MON的法向量為,則,取z=1,得,,所以到平面MON的距離為,則D錯誤.故選:D.7、A【解析】由可求得實數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.8、B【解析】直接利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)求解.【詳解】解:由題得.故選:B9、B【解析】由題意設拋物線方程為y2=2px(p>0),結(jié)合焦點坐標求得p,則答案可求【詳解】由題意可設拋物線方程為y2=2px(p>0),由焦點坐標為(1,0),得,即p=2∴拋物的標準方程是y2=4x故選B【點睛】本題主要考查了拋物線的標準方程及其簡單的幾何性質(zhì)的應用,其中解答中熟記拋物線的幾何性質(zhì)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題10、C【解析】雙曲線的實軸長為2,焦距為.根據(jù)題意和雙曲線的定義知,所以,,所以,所以.所以.故選:C【點睛】本題主要考查了焦點三角形以及橢圓的定義運用,屬于基礎題型.11、B【解析】根據(jù)已知條件求得的關系式,從而求得橢圓的離心率.【詳解】依題意可知,所以.故選:B12、D【解析】根據(jù)三角形解得個數(shù)可直接構(gòu)造不等式求得結(jié)果.【詳解】三角形有兩個解,,即.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.1011【解析】根據(jù)題意得到,得到,,,,進而得到,從而即可求得的值.【詳解】由題意,遞增數(shù)列共有項,各項均不為零,且,所以,所以的范圍是,因為時,仍是數(shù)列中的項,即,且上述的每一項均在數(shù)列中,所以,,,,即,所以,所以.故答案為:;.14、【解析】根據(jù)題意,作出拋物線的簡圖,求出拋物線的焦點坐標以及準線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點為,準線為,分別過,作準線的垂線,垂足為,,則有過的中點作準線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標為故答案為:15、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實數(shù)a的取值范圍是,故答案為:.16、##0.5【解析】分兩種情況,結(jié)合相互獨立事件公式即可求解.【詳解】記甲,乙通過聽力測試的分別為事件,則可得,兩人有且僅有一人通過為事件,故所求事件概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由直線過定點,只需判斷定點在圓內(nèi)部,即可證結(jié)論.(2)由點線距離公式求弦心距,再利用半徑、弦心距、弦長的幾何關系求弦長即可.【小問1詳解】直線恒過定點,又,所以點在圓的內(nèi)部,所以直線與圓總有兩個不同的交點,得證.【小問2詳解】由題設,,又的圓心為,半徑為,所以到直線的距離,所以所求弦長為18、(1);(2).【解析】(1)根據(jù)給定的遞推公式變形,再構(gòu)造常數(shù)列求解作答.(2)利用(1)的結(jié)論求出,再利用裂項相消法求和,由單調(diào)性求出最大整數(shù)m值作答.【小問1詳解】依題意,,當時,,兩式相減得:,即,整理得:,于是得,所以數(shù)列{an}的通項公式是.【小問2詳解】由(1)得,,數(shù)列是遞增數(shù)列,因此,,于是有,則,不等式成立,則,,于是得,所以使不等式成立的最大整數(shù)m的值是505.【點睛】思路點睛:使用裂項法求和時,要注意正負項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質(zhì)上造成正負相消是此法的根源與目的19、或【解析】先分別求出,為真時,的范圍;再求交集,即可得出結(jié)果.【詳解】若是真命題.則對任意恒成立,∴;若為真命題,則方程有實根,∴,解得或,由題意,真也真,∴或即實數(shù)的取值范圍是或.20、(1)(2)【解析】(1)先求導數(shù)再求最值即可求解答案;(2)由(1)確定切點,從而也確定的斜率就可以求切線.【小問1詳解】設,因為,所以,所以k的取值范圍為【小問2詳解】由(1)知,此時,即,所以此時曲線在點P處的切線方程為21、(1);(2);(3)當點與點關于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設,可得出,,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由已知可得,結(jié)合韋達定理可求得的值,即可得出直線的方程;(3)設與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標,可得出結(jié)論.【小問1詳解】解:因為,設,則,,所以,橢圓的方程可表示為,將點的坐標代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設點、,則,,,不合乎題意.所以,直線的斜率存在,設直線的方程為,設點、,聯(lián)立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當點為直線與橢圓的切點時,此時的面積取最大值,當時,方程(*)為,解得,此時,即點.此時,點與點關于軸對稱,因此,當點與點關于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值22、(1);(2)證明見解析.【解析】(1)由函數(shù)在上單調(diào)遞增,則在上恒成立,由求解.(2)由(1)的結(jié)論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因為函數(shù)在上單調(diào)遞增,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論