版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁2025屆江蘇省泰州市姜堰區(qū)數(shù)學九上開學統(tǒng)考試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,在正方形中,是對角線上的一點,點在的延長線上,連接、、,延長交于點,若,,則下列結論:①;②;③;④,其中正確的結論序號是()A.①②③ B.①②④ C.②③④ D.①②③④2、(4分)如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,則∠DBC的度數(shù)是()A.36° B.45° C.54° D.72°3、(4分)在同一平面直角坐標系中,函數(shù)與的圖象可能是()A. B.C. D.4、(4分)甲、乙兩班分別由10名選手參加健美比賽,兩班參賽選手身高的方差分別是S甲2=1.5,S乙2=2.5,則下列說法正確的是()A.甲班選手比乙班選手的身高整齊 B.乙班選手比甲班選手的身高整齊C.甲、乙兩班選手的身高一樣整齊 D.無法確定哪班選手的身高整齊5、(4分)一次數(shù)學測驗中,某小組五位同學的成績分別是:110,105,90,95,90,則這五個數(shù)據(jù)的中位數(shù)是()A.90 B.95 C.100 D.1056、(4分)如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數(shù)是()A.25 B. C. D.7、(4分)二次根式中的x的取值范圍是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣28、(4分)如圖,正方形ABCD的邊長為6,點E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長為()A.2 B.3 C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)如圖,在菱形中,,,以為邊作菱形,且;再以為邊作菱形,且;.……;按此規(guī)律,菱形的面積為______.10、(4分)甲、乙兩人玩撲克牌游戲,游戲規(guī)則是:從牌面數(shù)字分別為5,6,7的三張撲克牌中,隨機抽取一張,放回后,再隨機抽取一張,若所抽取的兩張牌牌面數(shù)字的積為奇數(shù),則甲獲勝;若所抽取的兩張牌牌面數(shù)字的積為偶數(shù),則乙獲勝.這個游戲________.(填“公平”或“不公平”)11、(4分)等腰三角形的腰長為5,底邊長為8,則它底邊上的高為_______,面積為________.12、(4分)如圖,正方形ABCD中,點E、F分別在邊BC、CD上,且AE=EF=FA.下列結論:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正確的是______(只填寫序號).13、(4分)已知A地在B地的正南方3km處,甲、乙兩人同時分別從A、B兩地向正北方向勻速直行,他們與A地的距離S(km)與所行時間t(h)之間的函數(shù)關系如圖所示,當他們行駛3h時,他們之間的距離為______km.三、解答題(本大題共5個小題,共48分)14、(12分)某公司招聘職員兩名,對甲、乙、丙、丁四名候選人進行了筆試和面試,各項成績滿分均為100分,然后再按筆試占60%、面試占40%計算候選人的綜合成績(滿分為100分).他們的各項成績如下表所示:修造人筆試成績/分面試成績/分甲9088乙8492丙x90丁8886(1)直接寫出這四名候選人面試成績的中位數(shù);(2)現(xiàn)得知候選人丙的綜合成績?yōu)?7.6分,求表中x的值;(3)求出其余三名候選人的綜合成績,并以綜合成績排序確定所要招聘的前兩名的人選.15、(8分)淮安日報社為了了解市民“獲取新聞的主要途徑”,開展了一次抽樣調查,根據(jù)調查結果繪制了如圖三種不完整的統(tǒng)計圖表.請根據(jù)圖表信息解答下列問題:(1)統(tǒng)計表中的m=,n=;(2)并請補全條形統(tǒng)計圖;(3)若該市約有80萬人,請你估計其中將“電腦上網(wǎng)”和“手機上網(wǎng)”作為“獲取新聞的主要途徑”的總人數(shù).16、(8分)如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.(1)求證:四邊形AODE是矩形;(2)若AB=2,AC=2,求四邊形AODE的周長.17、(10分)如圖,在平面直角坐標系中,正方形OABC的邊長為a.直線y=bx+c交x軸于E,交y軸于F,且a、b、c分別滿足﹣(a﹣4)2≥0,c=+8.(1)求直線y=bx+c的解析式并直接寫出正方形OABC的對角線的交點D的坐標;(2)直線y=bx+c沿x軸正方向以每秒移動1個單位長度的速度平移,設平移的時間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;(3)點P為正方形OABC的對角線AC上的動點(端點A、C除外),PM⊥PO,交直線AB于M,求的值.18、(10分)計算或化簡:(1);(2)B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.20、(4分)已知一個多邊形的每一個內角都等于108°,則這個多邊形的邊數(shù)是.21、(4分)關于的一元二次方程有實數(shù)根,則的取值范圍是_____.22、(4分)方程x3+8=0的根是_____.23、(4分)若分式的值為零,則x=________.二、解答題(本大題共3個小題,共30分)24、(8分)已知y=y(tǒng)1+y2,y1與x成正比例,y2與x-2成正比例,當x=1時,y=0;當x=-3時,y=4.(1)求y與x的函數(shù)關系式,并說明此函數(shù)是什么函數(shù);(2)當x=3時,求y的值.25、(10分)先化簡再求值:,其中.26、(12分)某加工廠購進甲、乙兩種原料,若甲原料的單價為元千克,乙原料的單價為元千克.現(xiàn)該工廠預計用不多于萬元且不少于萬元的資金購進這兩種原料共千克.(l)若需購進甲原料千克,請求出的取值范圍;(2)經(jīng)加工后:甲原料加工的產(chǎn)品,利潤率為;每一千克乙原料加工的產(chǎn)品售價為元.則應該怎樣安排進貨,才能使銷售的利潤最大?(3)在(2)的條件下,為了促銷,公司決定每售出一千克乙原料加工的產(chǎn)品,返還顧客現(xiàn)金元,而甲原料加工的產(chǎn)品售價不變,要使所有進貨方案獲利相同,求的值
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、A【解析】
①證明△AFM是等邊三角形,可判斷;②③證明△CBF≌△CDE(ASA),可作判斷;④設MN=x,分別表示BF、MD、BC的長,可作判斷.【詳解】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四邊形ABCD是正方形,∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM是等邊三角形,∴FM=AM=EM,故①正確;②連接CE、CF,∵四邊形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵,∴△CBF≌△CDE(ASA),∴BF=DE;故②正確;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正確;④過M作MN⊥AD于N,設MN=,則AM=AF=,,DN=MN=,∴AD=AB=,∴DE=BF=AB-AF=,∴,∵BC=AD=,故④錯誤;所以本題正確的有①②③;故選:A.本題考查了正方形的性質,全等三角形的判定與性質,等腰三角形的性質和判定,熟記正方形的性質確定出△AFM是等邊三角形是解題的關鍵.2、A【解析】
由已知條件開始,通過線段相等,得到角相等,再由三角形內角和求出各個角的大?。驹斀狻拷猓涸O∠A=x°,∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠C=∠BDC=72°,∴∠DBC=36°,故選:A.此題考查了等腰三角形的性質;熟練掌握等腰三角形的性質,以及三角形內角和定理,得到各角之間的關系式解答本題的關鍵.3、C【解析】
根據(jù)一次函數(shù)及二次函數(shù)的圖像性質,逐一進行判斷.【詳解】解:A.由一次函數(shù)圖像可知a>0,因此二次函數(shù)圖像開口向上,但對稱軸應在y軸左側,故此選項錯誤;B.由一次函數(shù)圖像可知a<0,而由二次函數(shù)圖像開口方向可知a>0,故此選項錯誤;C.由一次函數(shù)圖像可知a<0,因此二次函數(shù)圖像開口向下,且對稱軸在y軸右側,故此選項正確;D.由一次函數(shù)圖像可知a>0,而由二次函數(shù)圖像開口方向可知a<0,故此選項錯誤;故選:C.本題考查二次函數(shù)與一次函數(shù)圖象的性質,解題的關鍵是利用數(shù)形結合思想分析圖像,本題屬于中等題型.4、A【解析】
∵=1.5,=2.5,∴<,則甲班選手比乙班選手身高更整齊,故選A.本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.5、B【解析】試題分析:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).將數(shù)據(jù)按照從小到大的順序排列為:90,90,1,105,110,根據(jù)中位數(shù)的概念可得中位數(shù)為1.故答案選B.考點:中位數(shù).6、D【解析】
本題利用實數(shù)與數(shù)軸的關系及直角三角形三邊的關系(勾股定理)解答即可.【詳解】由勾股定理可知,∵OB=,∴這個點表示的實數(shù)是.故選D.本題考查了勾股定理的運用和如何在數(shù)軸上表示一個無理數(shù)的方法,解決本題的關鍵是根據(jù)勾股定理求出OB的長.7、D【解析】
根據(jù)“二次根式有意義滿足的條件是被開方數(shù)是非負數(shù)”,可得答案.【詳解】由題意,得2x+4≥0,解得x≥-2,故選D.本題考查了二次根式有意義的條件,利用被開方數(shù)是非負數(shù)得出不等式是解題關鍵.8、A【解析】
如圖,延長FD到G,使DG=BE,連接CG、EF,證△GCF≌△ECF,得到GF=EF,再利用勾股定理計算即可.【詳解】解:如圖,延長FD到G,使DG=BE,連接CG、EF∵四邊形ABCD為正方形,在△BCE與△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)∴CG=CE,∠DCG=∠BCE∴∠GCF=45°在△GCF與△ECF中∵GC=EC,∠GCF=∠ECF,CF=CF∴△GCF≌△ECF(SAS)∴GF=EF∵CE=,CB=6∴BE===3∴AE=3,設AF=x,則DF=6﹣x,GF=3+(6﹣x)=9﹣x∴EF==∴∴x=4,即AF=4∴GF=5∴DF=2∴CF===故選A.本題考查1.全等三角形的判定與性質;2.勾股定理;3.正方形的性質,作出輔助線構造全等三角形是解題的關鍵.二、填空題(本大題共5個小題,每小題4分,共20分)9、或.【解析】
根據(jù)題意求出每個菱形的邊長以及面積,從中找出規(guī)律.【詳解】解:當菱形的邊長為a,其中一個內角為120°時,
其菱形面積為:a2,當AB=1,易求得AC=,此時菱形ABCD的面積為:=×1,當AC=時,易求得AC1=3,此時菱形面積ACC1D1的面積為:=×()2,當AC1=3時,易求得AC2=3,此時菱形面積AC1C2D2的面積為:=×()4,……,由此規(guī)律可知:菱形AC2018C2019D2019的面積為×()2×2019=.,故答案為:或.本題考查規(guī)律型,解題的關鍵是正確找出菱形面積之間的規(guī)律,本題屬于中等題型.10、不公平.【解析】試題分析:先根據(jù)題意畫出樹狀圖,然后根據(jù)概率公式求解即可.畫出樹狀圖如下:共有9種情況,積為奇數(shù)有4種情況所以,P(積為奇數(shù))=即甲獲勝的概率是所以這個游戲不公平.考點:游戲公平性的判斷點評:解題的關鍵是熟練掌握概率的求法:概率=所求情況數(shù)與總情況數(shù)的比值.11、31【解析】
根據(jù)等腰三角形的性質求得高的長,從而再根據(jù)面積公式求得面積即可.【詳解】解:根據(jù)等腰三角形的三線合一得底邊上的高也是底邊的中線,則底邊的一半是4,根據(jù)勾股定理求得底邊上的高是3,則三角形的面積=×8×3=1.故答案為:3,1.本題考查了等腰三角形的性質和勾股定理.綜合運用等腰三角形的三線合一以及直角三角形的勾股定理是解答本題的關鍵.12、①②③⑤【解析】
AD=AB,AE=AF,∠B=∠D,△ABE≌△ADF,①正確,BE=DF,CE=CF,②正確,∠EFC=∠CEF=45°,AE=EF=FA,∠AFE=60°,∠AEB=75°.③正確.設FC=1,EF=,勾股定理知,DF=,AD=,S△ABE+S△ADF=2=.S△CEF=.⑤正確.無法判斷圈四的正確性,①②③⑤正確.故答案為①②③⑤.【詳解】請在此輸入詳解!13、1.5【解析】
因為甲過點(0,0),(2,4),所以S甲=2t.因為乙過點(2,4),(0,3),所以S乙=t+3,當t=3時,S甲-S乙=6-=三、解答題(本大題共5個小題,共48分)14、(1)這四名候選人面試成績的中位數(shù)為89(分);(2)表中x的值為86;(3)以綜合成績排序確定所要招聘的前兩名的人選是甲和丙.【解析】
(1)根據(jù)中位數(shù)的概念計算;(2)根據(jù)題意列出方程,解方程即可;(3)根據(jù)加權平均數(shù)的計算公式分別求出余三名候選人的綜合成績,比較即可.【詳解】(1)這四名候選人面試成績的中位數(shù)為:=89(分);(2)由題意得,x×60%+90×40%=87.6解得,x=86,答:表中x的值為86;(3)甲候選人的綜合成績?yōu)椋?0×60%+88×40%=89.2(分),乙候選人的綜合成績?yōu)椋?4×60%+92×40%=87.2(分),丁候選人的綜合成績?yōu)椋?8×60%+86×40%=87.2(分),∴以綜合成績排序確定所要招聘的前兩名的人選是甲和丙.本題考查的是中位線、加權平均數(shù),掌握中位數(shù)的概念、加權平均數(shù)的計算公式是解題的關鍵.15、(1)m=400,n=100;(2)見解析;(3)54.4萬人;【解析】
(1)先根據(jù)樣本中看電視獲取新聞的人數(shù)與占比求出此次調查的總人數(shù),再根據(jù)B組別的占比即可求出人數(shù)m,再用用人數(shù)將去各組別即可求出n;(2)根據(jù)數(shù)據(jù)即可補全統(tǒng)計圖;(3)求出樣本中“電腦上網(wǎng)”和“手機上網(wǎng)”作為“獲取新聞的主要途徑”的占比,再乘以該市總人數(shù)即可.【詳解】(1)此次調查的總人數(shù)為140÷14%=1000(人),∴m=1000×40%=400,n=1000-280-400-140-80=100;(2)補全統(tǒng)計圖如下:(3)該市將“電腦上網(wǎng)”和“手機上網(wǎng)”作為“獲取新聞的主要途徑”的人數(shù)約為80×=54.4(萬人)此題主要考查統(tǒng)計調查的應用,解題的關鍵是根據(jù)題意求出調查的總人數(shù).16、(1)見解析;(2)四邊形AODE的周長為2+2.【解析】
(1)根據(jù)題意可判斷出四邊形AODE是平行四邊形,再由菱形的性質可得出AC⊥BD,即∠AOD=90°,繼而可判斷出四邊形AODE是矩形;(2)由菱形的性質和勾股定理求出OB,得出OD,由矩形的性質即可得出答案.【詳解】(1)證明:∵DE∥AC,AE∥BD,∴四邊形AODE是平行四邊形,∵四邊形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四邊形AODE是矩形;(2)∵四邊形ABCD為菱形,∴AO=AC=1,OD=OB,∵∠AOB=90°,∴OB=,∴OD=,∵四邊形AODE是矩形,∴DE=OA=1,AE=OD=,∴四邊形AODE的周長=2+2.本題考查了菱形的性質、矩形的判定與性質、勾股定理、平行四邊形的判定;熟練掌握矩形的判定與性質和菱形的性質是解決問題的關鍵.17、(1)y=2x+8,D(2,2);(2)存在,5;(3).【解析】
試題分析:(1)利用非負數(shù)的性質求出a,b,c的值,進而確定出直線y=bx+c,得到正方形的邊長,即可確定出D坐標;(2)存在,理由為:對于直線y=2x+8,令y=0求出x的值,確定出E坐標,根據(jù)題意得:當直線EF平移到過D點時正好平分正方形AOBC的面積,設平移后的直線方程為y=2x+t,將D坐標代入求出b的值,確定出平移后直線解析式,進而確定出此直線與x軸的交點,從而求出平移距離,得到t的值;(3)過P點作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,利用同角的余角相等得到一對角相等,再由一對直角相等,利用角平分線定理得到PH=PQ,利用AAS得到三角形OPH與三角形MPQ全等,得到OH=QM,根據(jù)四邊形CNPG為正方形,得到PG=BQ=CN,由三角形CGP為等腰直角三角形得到CP=GP=BM,即可求出所求式子的值.試題解析:(1)∵-(a-4)2≥0,,∴a=4,b=2,c=8,∴直線y=bx+c的解析式為:y=2x+8,∵正方形OABC的對角線的交點D,且正方形邊長為4,∴D(2,2);(2)存在,理由為:對于直線y=2x+8,當y=0時,x=-4,∴E點的坐標為(-4,0),根據(jù)題意得:當直線EF平移到過D點時正好平分正方形AOBC的面積,設平移后的直線為y=2x+t,代入D點坐標(2,2),得:2=4+t,即t=-2,∴平移后的直線方程為y=2x-2,令y=0,得到x=1,∴此時直線和x軸的交點坐標為(1,0),平移的距離為1-(-4)=5,則t=5秒;(3)過P點作PQ∥OA,PH∥CO,交CO、AB于N、Q,交CB、OA于G、H,∵∠OPM=∠HPQ=90°,∴∠OPH+∠HPM=90°,∠HPM+∠MPQ=90°,∴∠OPH=∠MPQ,∵AC為∠BAO平分線,且PH⊥OA,PQ⊥AB,∴PH=PQ,在△OPH和△MPQ中,,∴△OPH≌△MPQ(AAS),∴OH=QM,∵四邊形CNPG為正方形,∴PG=BQ=CN,∴CP=PG=BM,即.考點:一次函數(shù)綜合題.【詳解】請在此輸入詳解!18、(1);(2).【解析】
(1)選逐項化簡,再合并同類項或同類二次根式即可;(2)先計算二次根式的乘法和除法,再合并同類項即可.【詳解】(1)=4--4+2=;(2)=a+-a=.本題考查了二次根式的混合運算,熟練掌握二次根式的性質及運算法則是解答本題的關鍵.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】
過點D作DF⊥BC于點F,由菱形的性質可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質可求k的值.【詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:本題考查了反比例函數(shù)圖象點的坐標特征,菱形的性質,勾股定理,求出DE的長度是本題的關鍵.20、1【解析】試題分析:∵多邊形的每一個內角都等于108°,∴每一個外角為72°.∵多邊形的外角和為360°,∴這個多邊形的邊數(shù)是:360÷÷72=1.21、或【解析】
根據(jù)一元二次方程根的判別式與根的情況的關系,求解判別式中的未知數(shù).【詳解】一元二次方程中,叫做一元二次方程的根的判別式,通常用“”來表示,即,當時,方程有2個實數(shù)根,當時,方程有1個實數(shù)根(2個相等的實數(shù)根),當時,方程沒有實數(shù)根.一元二次方程有實數(shù)根,則,可求得或.本題考查根據(jù)一元二次方程根的判別式.22、x=﹣1【解析】
把方程變形為形為x3=?8,利用立方根求解即可【詳解】解:方程可變形為x3=﹣8,因為(﹣1)3=﹣8,所以方程的解為x=﹣1.故答案為:x=﹣1此題考查立方根,解題關鍵在于掌握運算法則23、2【解析】
分式的值為1的條件是:(1)分子=1;(2)分母≠1.兩個條件需同時具備,缺一不可.據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度房屋租賃合同及房產(chǎn)權益抵押貸款擔保協(xié)議3篇
- 2025年度電子元器件維修與再制造合同3篇
- 二零二五年度擔保銷售化工產(chǎn)品合同模板范文2篇
- 2025年度版權授權使用及收益分成合同3篇
- 二零二五年度建筑材料區(qū)域代理銷售合同2篇
- 2025年度防盜門安裝與售后維修保養(yǎng)服務協(xié)議3篇
- 2025年度研發(fā)合作合同(生物醫(yī)藥領域)3篇
- 芋頭怎樣種植課程設計
- 課程設計與實踐教學計劃
- 海南醫(yī)學院《科學與工程計算方法》2023-2024學年第一學期期末試卷
- 2024政務服務綜合窗口人員能力與服務規(guī)范考試試題
- 新疆建設工程質量監(jiān)督管理工作手冊
- 小紅帽故事PPT課件15
- 旅游景區(qū)組織機構
- 漢字文化解密(華中師范大學)超星爾雅學習通網(wǎng)課章節(jié)測試答案
- 急救護理 氧氣吸入(氧氣筒)
- GB/T 304.9-2008關節(jié)軸承通用技術規(guī)則
- 22部能夠療傷的身心靈療愈電影
- 領導干部有效授權的技巧與藝術課件
- DB37-T 1915-2020 安全生產(chǎn)培訓質量控制規(guī)范-(高清版)
- 幼兒園“值日生”工作開展論文
評論
0/150
提交評論