版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆欽州市重點(diǎn)中學(xué)數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.2.是拋物線上一點(diǎn),是圓關(guān)于直線的對稱圓上的一點(diǎn),則最小值是()A. B. C. D.3.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③4.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎的概率為()A. B. C. D.5.將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.6.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.47.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.18.甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.59.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.10.已知向量,,,若,則()A. B. C. D.11.已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止.某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為()A. B. C. D.12.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊(duì)進(jìn)入決賽爭奪冠軍,失利的兩隊(duì)爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊(duì)獲得冠軍的概率為______.14.已知正實(shí)數(shù)滿足,則的最小值為.15.雙曲線的左右頂點(diǎn)為,以為直徑作圓,為雙曲線右支上不同于頂點(diǎn)的任一點(diǎn),連接交圓于點(diǎn),設(shè)直線的斜率分別為,若,則_____.16.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了”.丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某超市在節(jié)日期間進(jìn)行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機(jī)會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.18.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.19.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.20.(12分)設(shè)函數(shù),.(1)解不等式;(2)若對任意的實(shí)數(shù)恒成立,求的取值范圍.21.(12分)已知橢圓的焦距是,點(diǎn)是橢圓上一動點(diǎn),點(diǎn)是橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn)(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)是拋物線上兩點(diǎn),且處的切線相互垂直,直線與橢圓相交于兩點(diǎn),求的面積的最大值.22.(10分)已知等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是1.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,是數(shù)列的前項(xiàng)和,求使成立的正整數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)?,即可得到,故選:D.【點(diǎn)睛】本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.2、C【解析】
求出點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo),進(jìn)而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)為點(diǎn),則,整理得,解得,即點(diǎn),所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點(diǎn),則,當(dāng)時,取最小值,因此,.故選:C.【點(diǎn)睛】本題考查拋物線上一點(diǎn)到圓上一點(diǎn)最值的計(jì)算,同時也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計(jì)算能力,屬于中等題.3、C【解析】
根據(jù)直線與平面,平面與平面的位置關(guān)系進(jìn)行判斷即可.【詳解】根據(jù)面面平行的性質(zhì)以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質(zhì)可得,④正確;故選:C【點(diǎn)睛】本題主要考查了判斷直線與平面,平面與平面的位置關(guān)系,屬于中檔題.4、C【解析】
先計(jì)算出總的基本事件的個數(shù),再計(jì)算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.5、B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個單位,得到,此時與函數(shù)的圖象重合,則,即,,當(dāng)時,取得最小值為,故選:.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.6、C【解析】
根據(jù)對稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對稱性的應(yīng)用,屬于中檔題.7、C【解析】
連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.8、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。籄(甲,乙)B(?。〤(丙);A(甲,丙)B(丁)C(乙);A(甲,?。〣(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.9、B【解析】
方法一:令,則,,當(dāng),時,,單調(diào)遞減,∴時,,,且,∴,即在上單調(diào)遞增,時,,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時,存在使得,即,又在上單調(diào)遞減,∴時,,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時,與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.10、A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.11、A【解析】
根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點(diǎn)睛】本題考查離散型隨機(jī)變量期望的求解,易錯點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功12、D【解析】
構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當(dāng)時,則,;當(dāng)時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時,由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時要注意對的取值范圍進(jìn)行分類討論,考查推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.14、4【解析】
由題意結(jié)合代數(shù)式的特點(diǎn)和均值不等式的結(jié)論整理計(jì)算即可求得最終結(jié)果.【詳解】.當(dāng)且僅當(dāng)時等號成立.據(jù)此可知:的最小值為4.【點(diǎn)睛】條件最值的求解通常有兩種方法:一是消元法,即根據(jù)條件建立兩個量之間的函數(shù)關(guān)系,然后代入代數(shù)式轉(zhuǎn)化為函數(shù)的最值求解;二是將條件靈活變形,利用常數(shù)代換的方法構(gòu)造和或積為常數(shù)的式子,然后利用基本不等式求解最值.15、【解析】
根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系得,交圓于點(diǎn),所以,建立等式,兩式作商即可得解.【詳解】設(shè),交圓于點(diǎn),所以易知:即.故答案為:【點(diǎn)睛】此題考查根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級結(jié)論,此題可以簡化計(jì)算.16、丙【解析】若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,可知獲獎的歌手是丙.考點(diǎn):反證法在推理中的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)20.【解析】
(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個值時的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機(jī)變量X的分布列為:X01020301P數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,屬于中檔題.18、(1)(2)【解析】
(1)利用余弦定理可得的長;(2)利用面積得出,結(jié)合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點(diǎn)睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.19、(1)證明見解析(2)證明見解析【解析】
(1)先根據(jù)絕對值不等式求得的最大值,從而得到,再利用基本不等式進(jìn)行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進(jìn)行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點(diǎn)睛】本題考查絕對值不等式、應(yīng)用基本不等式證明不等式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和推理論證能力.20、(1);(2)【解析】試題分析:(1)將絕對值不等式兩邊平方,化為二次不等式求解.(2)將問題化為分段函數(shù)問題,通過分類討論并根據(jù)恒成立問題的解法求解即可.試題解析:整理得解得①②解得③,且無限趨近于4,綜上的取值范圍是21、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)設(shè)點(diǎn)的坐標(biāo),表達(dá)出直線的斜率之積,再根據(jù)三點(diǎn)均在橢圓上,根據(jù)橢圓的方程代入斜率之積的表達(dá)式列式求解即可.(Ⅱ)設(shè)直線的方程為,根據(jù)直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達(dá)出面積公式,再換元利用基本不等式求解即可.【詳解】(Ⅰ)設(shè),,則,又,,故,即,故,又,故.故橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)設(shè)直線的方程為,,由,故,又,故,因?yàn)樘幍那芯€相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達(dá)定理有設(shè),則.當(dāng)且僅當(dāng)時取等號.故的面積的最大值為.【點(diǎn)睛】本題主要考查了根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人借款分期還款協(xié)議(2025年)
- 物聯(lián)網(wǎng)設(shè)備開發(fā)與集成項(xiàng)目合作協(xié)議如物聯(lián)網(wǎng)公司
- 2025年原油委托加工合同
- 訂單采購合同范本(2025年)
- 托班星空音樂課程設(shè)計(jì)
- 基于人工智能的智能圖書館管理系統(tǒng)采購合同
- 車位銷售合同范本(2025年)
- 河北大學(xué)消防設(shè)備采購合同2025年
- 照明工程課程設(shè)計(jì)某學(xué)校
- 2025年認(rèn)證合同范本范本
- 2024-2025學(xué)年高二上學(xué)期期末數(shù)學(xué)試卷(基礎(chǔ)篇)(含答案)
- 直系親屬股權(quán)無償轉(zhuǎn)讓合同(2篇)
- 2023-2024學(xué)年廣東省廣州市白云區(qū)九年級(上)期末語文試卷
- 汽車吊籃使用專項(xiàng)施工方案
- 2024年典型事故案例警示教育手冊15例
- 中秋國慶慰問品采購?fù)稑?biāo)方案
- 110kV變電站及110kV輸電線路運(yùn)維投標(biāo)技術(shù)方案(第二部分)
- 新高處安裝維護(hù)拆除作業(yè)專題培訓(xùn)課件
- 【數(shù)據(jù)結(jié)構(gòu)】A類停車場管理系統(tǒng)
- 外貿(mào)參展攻略
- 培養(yǎng)教育考察記實(shí)簿
評論
0/150
提交評論