版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山西省陽泉市陽泉中學(xué)高一數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,,,則a,b,c的大小關(guān)系為()A. B.C. D.2.下列函數(shù)中既是偶函數(shù),又在上單調(diào)遞增的是()A B.C. D.3.在同一坐標(biāo)系中,函數(shù)與大致圖象是()A. B.C. D.4.設(shè),為兩個不同的平面,,為兩條不同的直線,則下列命題中正確的為()A.若,,則B.若,,則C.若,,則D.若,,則5.已知冪函數(shù)的圖象過(4,2)點,則A. B.C. D.6.已知直線與直線平行,則的值為A. B.C.1 D.7.函數(shù)在的圖象大致為A. B.C. D.8.已知扇形的周長是6,圓心角為,則扇形的面積是()A.1 B.2C.3 D.49.若函數(shù)的圖像向左平移個單位得到的圖像,則A. B.C. D.10.設(shè)角的終邊經(jīng)過點,那么A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若,,則的取值范圍是________12.若,則________.13.若,,,則的最小值為___________.14.若函數(shù)滿足,且當(dāng)時,則______15.設(shè)函數(shù),若不存在,使得與同時成立,則實數(shù)a的取值范圍是________.16.設(shè)三棱錐的三條側(cè)棱兩兩垂直,且,則三棱錐的體積是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)用五點法作函數(shù)在區(qū)間上的圖象;(2)解關(guān)于的方程.18.通常表明地震能量大小的尺度是里氏震級,其計算公式為:,其中,是被測地震的最大振幅,是“標(biāo)準(zhǔn)地震”的振幅(使用標(biāo)準(zhǔn)地震振幅是為了修正測震儀距實際震中的距離造成的偏差)(1)假設(shè)在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標(biāo)準(zhǔn)地震的振幅是0.001,計算這次地震的震級(精確到0.1);(2)5級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?(以下數(shù)據(jù)供參考:,)19.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點M為PC的中點(1)求證:PA∥平面BMD;(2)求證:AD⊥PB;(3)若AB=PD=2,求點A到平面BMD的距離20.如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,點E和F分別為BC和A1C的中點(1)求證:EF∥平面A1B1BA;(2)求直線A1B1與平面BCB1所成角的大?。?1.如圖1,直角梯形ABCD中,,,.如圖2,將圖1中沿AC折起,使得點D在平面ABC上的正投影G在內(nèi)部.點E為AB的中點.連接DB,DE,三棱錐D-ABC的體積為.對于圖2的幾何體(1)求證:;
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性求解.【詳解】因為,,,所以,故選:D2、C【解析】根據(jù)常見函數(shù)的單調(diào)性和奇偶性,即可容易判斷選擇.【詳解】根據(jù)題意,依次分析選項:對于A,,奇函數(shù),不符合題意;對于B,,為偶函數(shù),在上單調(diào)遞減,不符合題意;對于C,,既是偶函數(shù),又在上單調(diào)遞增,符合題意;對于D,為奇函數(shù),不符合題意;故選:C.【點睛】本題考查常見函數(shù)單調(diào)性和奇偶性的判斷,屬簡單題.3、B【解析】根據(jù)題意,結(jié)合對數(shù)函數(shù)與指數(shù)函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性知:在上單調(diào)遞增,在上單調(diào)遞增,只有B滿足.故選:B.4、D【解析】根據(jù)點線面位置關(guān)系,其中D選項是面面垂直的判定定理,在具體物體中辨析剩余三個選項.【詳解】考慮在如圖長方體中,平面,但不能得出平面,所以選項A錯誤;平面,平面,但不能得出,所以選項B錯誤;平面平面,平面,但不能得出平面;其中D選項是面面垂直的判定定理.故選:D【點睛】此題考查線面平行與垂直的辨析,關(guān)鍵在于準(zhǔn)確掌握基本定理,并應(yīng)用定理進行推導(dǎo)及辨析.5、D【解析】設(shè)函數(shù)式為,代入點(4,2)得考點:冪函數(shù)6、D【解析】由題意可得:,解得故選7、C【解析】當(dāng)時,,去掉D;當(dāng)時,,去掉B;因為,所以去A,選C.點睛:(1)運用函數(shù)圖象解決問題時,先要正確理解和把握函數(shù)圖象本身的含義及其表示的內(nèi)容,熟悉圖象所能夠表達的函數(shù)的性質(zhì).(2)在研究函數(shù)性質(zhì)特別是單調(diào)性、最值、零點時,要注意用好其與圖象的關(guān)系,結(jié)合圖象研究.8、B【解析】設(shè)扇形的半徑為r,弧長為l,先由周長求出半徑和弧長,即可求出扇形的面積.【詳解】設(shè)扇形的半徑為r,弧長為l,因為圓心角為,所以.因為扇形的周長是6,所以,解得:.所以扇形的面積是.故選:B9、A【解析】函數(shù)的圖象向左平移個單位,得到的圖象對應(yīng)的函數(shù)為:本題選擇A選項.10、D【解析】由題意首先求得的值,然后利用誘導(dǎo)公式求解的值即可.【詳解】由三角函數(shù)的定義可知:,則.本題選擇D選項.【點睛】本題主要考查由點的坐標(biāo)確定三角函數(shù)值的方法,誘導(dǎo)公式及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先利用已知條件,結(jié)合圖象確定的取值范圍,設(shè),即得到是關(guān)于t的二次函數(shù),再求二次函數(shù)的取值范圍即可.【詳解】先作函數(shù)圖象如下:由圖可知,若,,設(shè),則,,由知,;由知,;故,,故時,最小值為,時,最大值為,故的取值范圍是.故答案為:.【點睛】本題解題關(guān)鍵是數(shù)形結(jié)合,通過圖象判斷的取值范圍,才能分別找到與相等函數(shù)值t的關(guān)系,構(gòu)建函數(shù)求值域來突破難點.12、【解析】利用三角函數(shù)的誘導(dǎo)公式,化簡得到原式,代入即可求解.【詳解】因為,由故答案為:13、3【解析】利用基本不等式常值代換即可求解.【詳解】因為,,,所以,當(dāng)且僅當(dāng),即時,等號成立,所以的最小值為3,故答案為:314、1009【解析】推導(dǎo)出,當(dāng)時,從而當(dāng)時,,,由此能求出的值【詳解】∵函數(shù)滿足,∴,∵當(dāng)時,∴當(dāng)時,,,∴故答案為1009【點睛】本題主要考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題15、.【解析】當(dāng)恒成立,不存在使得與同時成立,當(dāng)時,恒成立,則需時,恒成立,只需時,,對的對稱軸分類討論,即可求解.【詳解】若時,恒成立,不存使得與同時成立,則時,恒成立,即時,,對稱軸為,當(dāng)時,即,解得,當(dāng),即為拋物線頂點的縱坐標(biāo),,只需,.若恒成立,不存在使得與同時成立,綜上,的取值范圍是.故答案為:.【點睛】本題考查了二次函數(shù)和一次函數(shù)的圖像和性質(zhì),不等式恒成立和能成立問題的解法,考查分類討論和轉(zhuǎn)化化歸的思想方法,屬于較難題.16、【解析】根據(jù)錐體的體積公式,找到并求出三棱錐的高及底面面積即可求解.【詳解】由題意可知該三棱錐為棱長為2的正方體的一個角,如圖所示:所以故答案為:【點睛】本題考查錐體體積公式的應(yīng)用,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)畫圖見解析;(2)或.【解析】(1)根據(jù)列表、描點、連線的基本步驟,畫出函數(shù)在的大致圖像即可;(2)由題意得:,解得或,,分類求解即可得解方程的解集.【詳解】(1),∴,,的變化如下表:0200的圖象如圖:(2)令,則,或,,或,,的解集為:或.【點睛】用“五點法”作的簡圖,主要是通過變量代換,設(shè),由取,,,,來求出相應(yīng)的,通過列表,計算得出五點坐標(biāo),描點后得出圖象18、(1)4.5(2)1000【解析】(1)把最大振幅和標(biāo)準(zhǔn)振幅直接代入公式M=lgA-lg求解;(2)利用對數(shù)式和指數(shù)式的互化由M=lgA-lg得A=,把M=8和M=5分別代入公式作比后即可得到答案試題解析:(1)因此,這次地震的震級為里氏4.5級.(2)由可得,即,當(dāng)時,地震的最大振幅為;當(dāng)時,地震的最大振幅為;所以,兩次地震的最大振幅之比是:答:8級地震的最大振幅是5級地震的最大振幅的1000倍.考點:函數(shù)模型的選擇與應(yīng)用19、(1)詳見解析;(2)詳見解析;(3).【解析】(1)設(shè)AC和BD交于點O,MO為三角形PAC的中位線可得MO∥PA,再利用直線和平面平行的判定定理,證得結(jié)論(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,證得AD⊥BD,可證AD⊥平面PBD,從而證得結(jié)論(3)點A到平面BMD的距離等于點C到平面BMD的距離h,求出MN、MO的值,利用等體積法求得點C到平面MBD的距離h【詳解】(1)證明:設(shè)AC和BD交于點O,則由底面ABCD是平行四邊形可得O為AC的中點由于點M為PC的中點,故MO為三角形PAC的中位線,故MO∥PA.再由PA不在平面BMD內(nèi),而MO在平面BMD內(nèi),故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四邊形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD這樣,AD垂直于平面PBD內(nèi)的兩條相交直線,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,則AD=1,BD=AB?sin∠BAD=2,由于平面BMD經(jīng)過AC的中點,故點A到平面BMD的距離等于點C到平面BMD的距離取CD得中點N,則MN⊥平面ABCD,且MNPD=1設(shè)點C到平面MBD的距離為h,則h為所求由AD⊥PB可得BC⊥PB,故三角形PBC為直角三角形由于點M為PC的中點,利用直角三角形斜邊的中線等于斜邊的一半,可得MD=MB,故三角形MBD為等腰三角形,故MO⊥BD由于PA,∴MO由VM﹣BCD=VC﹣MBD可得,?()?MN?(BD×MO)×h,故有()×1?()?h,解得h【點睛】本題主要考查直線和平面平行的判定定理,直線和平面垂直的性質(zhì),用等體積法求點到平面的距離,體現(xiàn)了數(shù)形結(jié)合和等價轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題20、(1)詳見解析(2)30°【解析】(1)連接A1B,結(jié)合三角形中位線定理,得到平行,結(jié)合直線與平面平行,的判定定理,即可.(2)取的中點N,連接,利用直線與平面垂直判定定理,得到平面,找出即為所求的角,解三角形,計算該角的大小,即可【詳解】解:(1)證明:如圖,連接A1B.在△A1BC中,因為E和F分別是BC和A1C的中點,所以EF∥BA1.又EF?平面A1B1BA,所以EF∥平面A1B1BA(2)解:因為AB=AC,E為BC的中點,所以AE⊥BC.因為AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,從而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,.取BB1的中點M和B1C的中點N,連接A1M,A1N,NE.因為N和E分別為B1C和BC的中點,所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因為AE⊥平面BCB1,所以A1N⊥平面BCB1,從而∠A1B1N為直線A1B1與平面BCB1所成的角.在△ABC中,可得AE=2,所以A1N=AE=2.因為BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB,由AB⊥BB1,有A1M⊥BB1.在Rt△A1MB1中,可得A1B1=4.在Rt△A1NB1中,sin∠A1B1N=,因此∠A1B1N=30°.所以直線A1B1與平面BCB1所成的角為30°【點睛】本題考查了直線與平面垂直、平行判定定理和直線與平面所成角的找法,證明直線與平面平行關(guān)鍵找出一條直線與平面內(nèi)一條直線平行,直線與平面所成角的找法關(guān)鍵找出直線垂直平面的那條直線,建立角,解三角形,即可.21、(1)證明見解析;(2).【解析】(1)取AC的中點F,連接DF,CE,EF,證明AC⊥平面DEF即可.(2)以G為坐標(biāo)原點,建立空間直角坐標(biāo)系,利用向量的方法求解線面角.【小問1詳解】取AC的中點F,連接DF,CE,EF,則△DAC,△EAC均為等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE?平面DEF,∴DE⊥AC【小問2詳解】連接GA,GC,∵DG⊥平面ABC,而GA?平面ABC,GC?平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年春七年級語文下冊 第三單元 12 賣油翁說課稿 新人教版
- 12古詩三首《己亥雜詩》說課稿-2024-2025學(xué)年語文五年級上冊統(tǒng)編版
- 15 分享真快樂(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治 一年級下冊001
- 2025裝修工程泥工承包合同
- 7讓弦發(fā)出高低不同的聲音 說課稿-2024-2025學(xué)年科學(xué)四年級上冊教科版
- 2024-2025學(xué)年高中歷史 專題四 王安石變法 一 積貧積弱的北宋教學(xué)說課稿 人民版選修1
- 14 請幫我一下吧 第一課時 說課稿-2023-2024學(xué)年道德與法治一年級下冊統(tǒng)編版
- 6我們神圣的國土 第1課時(說課稿)-部編版道德與法治五年級上冊
- 2023八年級英語下冊 Module 1 Feelings and impressions Unit 2 I feel nervous when I speak Chinese第三課時說課稿 (新版)外研版
- 2024-2025學(xué)年新教材高中語文 第二單元 6.2 文氏外孫入村收麥說課稿(3)部編版必修上冊
- 2025年礦山開采承包合同實施細則4篇
- 2025年度茶葉品牌加盟店加盟合同及售后服務(wù)協(xié)議
- 氧氣、乙炔工安全操作規(guī)程(3篇)
- 建筑廢棄混凝土處置和再生建材利用措施計劃
- 某縣城區(qū)地下綜合管廊建設(shè)工程項目可行性實施報告
- 《架空輸電線路導(dǎo)線舞動風(fēng)偏故障告警系統(tǒng)技術(shù)導(dǎo)則》
- 2024年計算機二級WPS考試題庫
- 2024年廣東省公務(wù)員錄用考試《行測》真題及解析
- 物業(yè)保潔及餐飲服務(wù)項目方案
- (新版教材)粵教粵科版六年級下冊科學(xué)全冊課時練(同步練習(xí))
- c語言期末機考(大連理工大學(xué)題庫)
評論
0/150
提交評論