版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省忻州市岢嵐縣中學2025屆高一數(shù)學第一學期期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的圖像大致為()A. B.C. D.2.某流行病調(diào)查中心的疾控人員針對該地區(qū)某類只在人與人之間相互傳染的疾病,通過現(xiàn)場調(diào)查與傳染源傳播途徑有關(guān)的蛛絲馬跡,根據(jù)傳播鏈及相關(guān)數(shù)據(jù),建立了與傳染源相關(guān)確診病例人數(shù)與傳染源感染后至隔離前時長t(單位:天)的模型:.已知甲傳染源感染后至隔離前時長為5天,與之相關(guān)確診病例人數(shù)為8;乙傳染源感染后至隔離前時長為8天,與之相關(guān)確診病例人數(shù)為20.若某傳染源感染后至隔離前時長為兩周,則與之相關(guān)確診病例人數(shù)約為()A.44 B.48C.80 D.1253.已知函數(shù)有唯一零點,則()A. B.C. D.14.已知集合,,則()A. B.C. D.5.已知是第三象限角,,則A. B.C. D.6.將函數(shù)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移個單位,得到的圖象對應(yīng)的解析式是A. B.C. D.7.若,且,則()A. B.C. D.8.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f的x的取值范圍是()A. B.C. D.9.設(shè)a>0且a≠1,則“函數(shù)fx=ax在R上是減函數(shù)”是“函數(shù)gxA.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.若函數(shù)在單調(diào)遞增,則實數(shù)a的取值范圍為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓:,為圓上一點,、、,則的最大值為______.12.設(shè)函數(shù),則下列結(jié)論①的圖象關(guān)于直線對稱②的圖象關(guān)于點對稱③的圖象向左平移個單位,得到一個偶函數(shù)的圖象④的最小正周期為,且在上為增函數(shù)其中正確的序號為________.(填上所有正確結(jié)論的序號)13.已知,且,若不等式恒成立,則實數(shù)的最大值是__________.14.已知角的終邊經(jīng)過點,則________.15.已知正實數(shù)x,y滿足,則的最小值為______16.設(shè)點A(2,-3),B(-3,-2),直線過P(1,1)且與線段AB相交,則l的斜率k的取值范圍是_____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)用函數(shù)單調(diào)性定義證明:函數(shù)在區(qū)間上是嚴格增函數(shù);(2)函數(shù)在區(qū)間上是單調(diào)函數(shù)嗎?為什么?18.如圖,動物園要建造一面靠墻的兩間相同的矩形熊貓居室,如果可供建造圍墻的材料總長是用寬(單位)表示所建造的每間熊貓居室的面積(單位);怎么設(shè)計才能使所建造的每間熊貓居室面積最大?并求出每間熊貓居室的最大面積?19.圓內(nèi)有一點,為過點且傾斜角為的弦.(1)當時,求的長;(2)當弦被點平分時,寫出直線的方程.20.已知函數(shù),不等式解集為,設(shè)(1)若存在,使不等式成立,求實數(shù)的取值范圍;(2)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍21.已知,向量,,記函數(shù),且函數(shù)的圖象相鄰兩對稱軸間的距離為.(1)求函數(shù)的解析式;(2)若關(guān)于的方程在上有三個不相等的實數(shù)根,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先判斷函數(shù)為偶函數(shù)排除;再根據(jù)當時,,排除得到答案.【詳解】,偶函數(shù),排除;當時,,排除故選【點睛】本題考查了函數(shù)圖像的識別,通過函數(shù)的奇偶性和特殊函數(shù)點可以排除選項快速得到答案.2、D【解析】根據(jù)求得,由此求得的值.【詳解】依題意得,,,所以.故若某傳染源感染后至隔離前時長為兩周,則相關(guān)確診病例人數(shù)約為125.故選:D3、B【解析】令,轉(zhuǎn)化為有唯一零點,根據(jù)偶函數(shù)的對稱性求解.【詳解】因為函數(shù),令,則為偶函數(shù),因為函數(shù)有唯一零點,所以有唯一零點,根據(jù)偶函數(shù)對稱性,則,解得,故選:B4、B【解析】直接利用交集運算法則得到答案.【詳解】,,則故選:【點睛】本題考查了交集的運算,屬于簡單題.5、D【解析】利用條件以及同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個象限中的符號,求得sinα的值【詳解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故選D【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題6、C【解析】將函數(shù)y=sin(x-)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)得到y(tǒng)=sin(x-),再向左平移個單位得到的解析式為y=sin((x+)-)=y=sin(x-),故選C7、D【解析】根據(jù)給定條件,將指數(shù)式化成對數(shù)式,再借助換底公式及對數(shù)運算法則計算即得.【詳解】因為,于是得,,又因為,則有,即,因此,,而,解得,所以.故選:D8、A【解析】根據(jù)函數(shù)的奇偶性和單調(diào)性,將不等式進行等價轉(zhuǎn)化,求解即可.【詳解】∵f(x)為偶函數(shù),∴f(x)=f(|x|).則f(|2x-1|)<f.又∵f(x)在[0,+∞)上單調(diào)遞增,∴|2x-1|<,解得<x<.故選:.【點睛】本題考查利用函數(shù)奇偶性和單調(diào)性解不等式,屬綜合基礎(chǔ)題.9、A【解析】函數(shù)f(x)=ax在R上是減函數(shù),根據(jù)指數(shù)函數(shù)的單調(diào)性得出0<a<1;函數(shù)g(x)=(4-a)?x在R上是增函數(shù),得出0<a<4且【詳解】函數(shù)f(x)=ax在R上是減函數(shù),則函數(shù)g(x)=(4-a)?x在R上是增函數(shù),則4-a>0,而a>0且a≠1,解得:0<a<4且a≠1,故“函數(shù)fx=ax在R上是減函數(shù)”是“函數(shù)gx故選:A.10、D【解析】根據(jù)給定條件利用對數(shù)型復(fù)合函數(shù)單調(diào)性列式求解作答.【詳解】函數(shù)中,令,函數(shù)在上單調(diào)遞增,而函數(shù)在上單調(diào)遞增,則函數(shù)在上單調(diào)遞增,且,因此,,解得,所以實數(shù)a的取值范圍為.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、53【解析】設(shè),則,從而求出,再根據(jù)的取值范圍,求出式子的最大值.【詳解】設(shè),因為為圓上一點,則,且,則(當且僅當時取得最大值),故答案為:53.【點睛】本題屬于圓與距離的應(yīng)用問題,主要考查代數(shù)式的最值求法.解決此類問題一是要將題設(shè)條件轉(zhuǎn)化為相應(yīng)代數(shù)式;二是要確定代數(shù)式中變量的取值范圍.12、③【解析】利用正弦型函數(shù)的對稱性判斷①②的正誤,利用平移變換判斷③的正誤,利用周期性與單調(diào)性判斷④的正誤.【詳解】解:對于①,因為f()=sinπ=0,所以不是對稱軸,故①錯;對于②,因為f()=sin,所以點不是對稱中心,故②錯;對于③,將把f(x)的圖象向左平移個單位,得到的函數(shù)為y=sin[2(x)]=sin(2x)=cos2x,所以得到一個偶函數(shù)的圖象;對于④,因為若x∈[0,],則,所以f(x)在[0,]上不單調(diào),故④錯;故正確的結(jié)論是③故答案為③【點睛】此題考查了正弦函數(shù)的對稱性、三角函數(shù)平移的規(guī)律、整體角處理的方法,正弦函數(shù)的圖象與性質(zhì)是解本題的關(guān)鍵三、13、9【解析】利用求的最小值即可.【詳解】,當且僅當a=b=時取等號,不等式恒成立,則m≤9,故m的最大值為9.故答案為:9.14、【解析】根據(jù)終邊上的點,結(jié)合即可求函數(shù)值.【詳解】由題意知:角在第一象限,且終邊過,∴.故答案為:.15、【解析】令,轉(zhuǎn)化條件為方程有解,運算可得【詳解】令,則,化簡得,所以,解得或(舍去),當時,,符合題意,所以得最小值為.故答案為:.16、k≥或k≤-4【解析】算出直線PA、PB的斜率,并根據(jù)斜率變化的過程中求得斜率的取值范圍詳解】直線PA的斜率為,同理可得PB的斜率為直線過點且與AB相交直線的斜率取值范圍是k≥或k≤-4故答案為k≥或k≤-4三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)不是單調(diào)函數(shù),理由見解析.【解析】(1)根據(jù)函數(shù)解析式在給定區(qū)間內(nèi)任取,判斷對應(yīng)函數(shù)值的大小關(guān)系,即可說明函數(shù)的單調(diào)性.(2)利用三元基本不等式求在上的最值并確定等號成立的條件,即可判斷的單調(diào)性.【小問1詳解】由題設(shè),且,任取,則,又,,,,即,∴,即,∴函數(shù)在區(qū)間上是嚴格增函數(shù);【小問2詳解】由題設(shè),在上,當且僅當時等號成立,∴,顯然在的兩側(cè)單調(diào)性不同.∴在上不是單調(diào)函數(shù).18、(1)(2)使每間熊貓居室的寬為,每間居室的長為15m時所建造的每間熊貓居室面積最大;每間熊貓居室的最大面積為150【解析】(1)根據(jù)周長求出居室的長,再根據(jù)矩形面積公式得函數(shù)關(guān)系式,最后根據(jù)實際意義確定定義域(2)根據(jù)對稱軸與定義區(qū)間位置關(guān)系確定最值取法:在對稱軸處取最大值試題解析:解:(1)設(shè)熊貓居室的寬為(單位),由于可供建造圍墻的材料總長是,則每間熊貓居室的長為(單位m)所以每間熊貓居室的面積又得(2)二次函數(shù)圖象開口向下,對稱軸且,當時,,所以使每間熊貓居室的寬為,每間居室的長為15m時所建造的每間熊貓居室面積最大;每間熊貓居室的最大面積為150點睛:在建立二次函數(shù)模型解決實際問題中的最優(yōu)問題時,一定要注意自變量的取值范圍,需根據(jù)函數(shù)圖象的對稱軸與函數(shù)定義域在坐標系中對應(yīng)區(qū)間之間的位置關(guān)系討論求解.解決函數(shù)應(yīng)用問題時,最后還要還原到實際問題19、(1);(2).【解析】(1)求出直線AB的斜率即可寫出其點斜式方程,利用勾股定理可求得弦長;(2)當弦被點平分時,AB與垂直,由此可求出直線AB的斜率,寫出其點斜式方程化簡即可.【詳解】(1)依題意,直線AB的斜率為,又直線AB過點,所以直線AB的方程為:,圓心到直線AB的距離為,則,所以;(2)當弦被點平分時,AB與垂直,因為,所以,直線AB的點斜式方程為,即.【點睛】本題考查直線的點斜式方程、直線截圓所得弦長,屬于基礎(chǔ)題.20、(1);(2)【解析】(1)由不等式的解集為可知是方程的兩個根,即可求出,根據(jù)的單調(diào)性求出其在的最大值,即可得出m的范圍;(2)方程可化為,令,則有兩個不同的實數(shù)解,,根據(jù)函數(shù)性質(zhì)可列出不等式求解.【詳解】(1)∵不等式的解集為∴,是方程的兩個根∴,解得.∴則∴存在,使不等式成立,等價于在上有解,而在時單調(diào)遞增,∴∴的取值范圍為(2)原方程可化為令,則,則有兩個不同的實數(shù)解,,其中,,或,記,則①,解得或②,不等式組②無實數(shù)解∴實數(shù)的取值范圍為【點睛】本題考查一元二次不等式的解集與方程的根的關(guān)系,考查函數(shù)的單調(diào)性,考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025陜西建筑安全員知識題庫及答案
- 2025年重慶市安全員-B證(項目經(jīng)理)考試題庫
- 2025年江西省建筑安全員《A證》考試題庫
- 【大學課件】工程倫理
- 【大學課件】工程建設(shè)監(jiān)理概論
- 《答謝中書書》課件1
- 物業(yè)客服培訓課件
- 單位管理制度展示選集人員管理十篇
- 2025年中國航空貨物運輸保險行業(yè)市場發(fā)展現(xiàn)狀及投資方向研究報告
- 單位管理制度收錄大合集【職員管理篇】
- 2025年中國社會科學院外國文學研究所專業(yè)技術(shù)人員招聘3人歷年高頻重點提升(共500題)附帶答案詳解
- 《高血壓治療新進展》課件
- 小紅書營銷師(初級)認證理論知識考試題及答案
- 貴州省部分學校2024-2025學年高三年級上冊10月聯(lián)考 化學試卷
- 2023-2024學年貴州省貴陽外國語實驗中學八年級(上)期末數(shù)學試卷(含答案)
- 2024年新能源汽車概論考試題庫
- 2024年醫(yī)師定期考核臨床類人文醫(yī)學知識考試題庫及答案(共280題)
- 2024年公司年終工作會議講話稿(4篇)
- 供應(yīng)商年終總結(jié)
- 2024員工心理健康培訓
- 2024年二級建造師繼續(xù)教育考核題及答案
評論
0/150
提交評論