




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
遼寧省大連大世界高中2025屆數(shù)學高二上期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.2.已知橢圓及以下3個函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有()A.0個 B.1個C.2個 D.3個3.已知,是球的球面上兩點,,為該球面上的動點,若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.4.已知集合A={1,a,b},B={a2,a,ab},若A=B,則a2021+b2020=()A.-1 B.0C.1 D.25.如果,那么下列不等式成立的是()A. B.C. D.6.橢圓上一點到一個焦點的距離為,則到另一個焦點的距離是()A. B.C. D.7.已知離散型隨機變量X的分布列如下:X123P則數(shù)學期望()A. B.C.1 D.28.已知直線與直線垂直,則實數(shù)a為()A. B.或C. D.或9.現(xiàn)有4本不同的書全部分給甲、乙、丙3人,每人至少一本,則不同的分法有()A.12種 B.24種C.36種 D.48種10.已知點,,若直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.11.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.12.已知半徑為2的圓經(jīng)過點(5,12),則其圓心到原點的距離的最小值為()A.10 B.11C.12 D.13二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則函數(shù)在上的最大值為_______14.曲線在處的切線與坐標軸圍成的三角形面積為___________.15.在空間直角坐標系中,已知,,,,則___________.16.已知函數(shù)有且僅有兩個不同的零點,則實數(shù)的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,為等邊三角形,且面面,(1)求證:;(2)當與平面BCD所成角為45°時,求二面角的余弦值18.(12分)已知函數(shù),.(1)若在單調(diào)遞增,求的取值范圍;(2)若,求證:.19.(12分)如圖1,在△MBC中,,A,D分別為棱BM,MC的中點,將△MAD沿AD折起到△PAD的位置,使,如圖2,連結(jié)PB,PC,BD(1)求證:平面PAD⊥平面ABCD;(2)若E為PC中點,求直線DE與平面PBD所成角的正弦值20.(12分)已知橢圓:經(jīng)過點,設右焦點F,橢圓上存在點Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過點的直線與橢圓交于D,G兩點.是否存在直線使得以DG為直徑的圓過點E(-1,0)?若存在,求出直線的方程,若不存在,說明理由.21.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)若圓C與直線交于A,B兩點,______,求m的值從下列三個條件中任選一個補充在上面問題中并作答:條件①:;條件②:圓上一點P到直線的最大距離為;條件③:22.(10分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),計算三個數(shù)判斷作答.【詳解】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應輸出的x值為.故選:A2、C【解析】由橢圓的幾何性質(zhì)可得橢圓的圖像關于原點對稱,因為函數(shù),函數(shù)為奇函數(shù),其圖像關于原點對稱,則①②滿足題意,對于函數(shù)在軸右側(cè)時,,只有時,,即函數(shù)在軸右側(cè)的圖像顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關于軸對稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,得解.【詳解】解:因為橢圓的圖像關于原點對稱,對于①,函數(shù)為奇函數(shù),其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于②,函數(shù)為奇函數(shù),其圖像關于原點對稱,即可知的圖象能等分該橢圓面積;對于③,對于函數(shù)在軸右側(cè)時,,只有時,,即函數(shù)在軸右側(cè)的圖像(如圖)顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關于軸對稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,即函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有2個,故選C.【點睛】本題考查了橢圓的幾何性質(zhì)、函數(shù)的奇偶性及函數(shù)的對稱性,重點考查了函數(shù)的性質(zhì),屬基礎題.3、C【解析】當平面時,三棱錐體積最大,根據(jù)棱長與球半徑關系即可求出球半徑,從而求出表面積.【詳解】當平面時,三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點睛】關鍵點點睛:本題考查三棱錐與球的組合體的綜合問題,本題的關鍵是判斷當平面時,三棱錐體積最大.4、A【解析】根據(jù)A=B,可得兩集合元素全部相等,分別求得和ab=1兩種情況下,a,b的取值,分析討論,即可得答案.【詳解】因為A=B,若,解得,當時,不滿足互異性,舍去,當時,A={1,-1,b},B={1,-1,-b},因為A=B,所以,解得,所以;若ab=1,則,所以,若,解得或1,都不滿足題意,舍去,若,解得,不滿足互異性,舍去,故選:A【點睛】本題考查兩集合相等的概念,在集合相等問題中由一個條件求出參數(shù)后需進行代入檢驗,檢驗是否滿足互異性、題設條件等,屬基礎題.5、D【解析】利用不等式的性質(zhì)分析判斷每個選項.【詳解】由不等式的性質(zhì)可知,因為,所以,,故A錯誤,D正確;由,可得,,故B,C錯誤.故選:D6、B【解析】利用橢圓的定義可得結(jié)果.【詳解】在橢圓中,,由橢圓的定義可知,到另一個焦點的距離是.故選:B.7、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D8、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.9、C【解析】先把4本書按2,1,1分為3組,再全排列求解.【詳解】先把4本書按2,1,1分為3組,再全排列,則有種分法,故選:C10、B【解析】直接利用兩點間的坐標公式和直線的斜率的關系求出結(jié)果【詳解】解:直線過點且斜率為,與連接兩點,的線段有公共點,由圖,可知,,當時,直線與線段有交點故選:B11、C【解析】根據(jù)四面體的性質(zhì),結(jié)合線面垂直的判定定理、球的性質(zhì)、正弦定理進行求解即可.【詳解】由圖設點為中點,連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長線與此大圓交于點.在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設三角形的外接圓圓心為點,則面,有,則,設的外接圓圓心為點,則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點,由,所以,故選:C.【點睛】關鍵點睛:運用正弦定理、勾股定理、線面垂直的判定定理是解題的關鍵.12、B【解析】由條件可得圓心的軌跡是以點為圓心,半徑為2的圓,然后可得答案.【詳解】因為半徑為2的圓經(jīng)過點(5,12),所以圓心的軌跡是以點為圓心,半徑為2的圓,所以圓心到原點的距離的最小值為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點,的大小求出在上的最大值.【詳解】因為,則,令,即時,函數(shù)單調(diào)遞增.令,即時,函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點為,,即最大值為.故答案為:.14、【解析】先求導數(shù),得出切線斜率,寫出切線方程,然后可求三角形的面積.【詳解】,當時,,所以切線方程為,即;令可得,令可得;所以切線與坐標軸圍成的三角形面積為.故答案為:.15、或##或【解析】根據(jù)向量平行時坐標的關系和向量的模公式即可求解.【詳解】,且,設,,解得,或.故答案為:或.16、【解析】函數(shù)有兩個不同零點即y=a與g(x)=圖像有兩個交點,畫出近似圖象即得a的范圍﹒【詳解】∵函數(shù)有且僅有兩個不同的零點,令,則y=a與g(x)=圖像有兩個交點,∵,∴當時,,單調(diào)遞減,當時,,單調(diào)遞增,∴當時,,作出函數(shù)與的圖象,∴當時,y=a與g(x)有兩個交點﹒故答案為:﹒三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件證得平面即可推理作答.(2)由與平面BCD所成角確定正邊長與CD長的關系,再作出二面角的平面角,借助余弦定理計算作答.【小問1詳解】在三棱錐中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小問2詳解】取BC中點F,連接AF,DF,如圖,因為等邊三角形,則,而平面平面,平面平面,平面,于是得平面,是與平面BCD所成角,即,令,則,因,即有,由(1)知,,則有,過C作交AD于O,在平面內(nèi)過O作交BD于E,連CE,從而得是二面角的平面角,中,,,中,由余弦定理得,,,顯然E是斜邊中點,則,中,由余弦定理得,所以二面角的余弦值.18、(1);(2)證明見解析.【解析】(1)由函數(shù)在上單調(diào)遞增,則在上恒成立,由求解.(2)由(1)的結(jié)論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因為函數(shù)在上單調(diào)遞增,所以在上恒成立,則有在上恒成立,即.令函數(shù),,所以時,,在上單調(diào)遞增,所以,所以有,即,因此.(2)由(1)可知當時,為增函數(shù),不妨取,則有在上單調(diào)遞增,所以,即有在上恒成立,令,則有,所以,所以,因此.【點睛】方法點睛:(1)利用導數(shù)研究函數(shù)的單調(diào)性的關鍵在于準確判定導數(shù)的符號,當f(x)含參數(shù)時,需依據(jù)參數(shù)取值對不等式解集的影響進行分類討論.(2)若可導函數(shù)f(x)在指定的區(qū)間D上單調(diào)遞增(減),求參數(shù)范圍問題,可轉(zhuǎn)化為f′(x)≥0(或f′(x)≤0)恒成立問題,從而構(gòu)建不等式,要注意“=”是否可以取到19、(1)證明見解析;(2).【解析】(1)推導出,,利用線面垂直的判定定理可得平面,再利用面面垂直的判定定理即可證明;(2)以A為坐標原點,建立如圖空間直角坐標系,利用向量法即可求出直線DE與平面所成角的正弦值.【小問1詳解】由題意知,因為點A、D分別為MB、MC中點,所以,又,所以,所以.因為,所以,又,所以平面,又平面,所以平面平面;【小問2詳解】因為,,,所以兩兩垂直,以A為坐標原點,建立如圖空間直角坐標系,,則,設平面的一個法向量為,則,令,得,所以,設直線DE與平面所成角為,則,所以直線DE與平面所成角的正弦值為.20、(1);(2)存在,或.【解析】(1)根據(jù)題意,列出的方程組,求得,則橢圓方程得解;(2)對直線的斜率進行討論,當斜率存在時,設出直線方程,聯(lián)立橢圓方程,利用韋達定理,轉(zhuǎn)化題意為,求解即可.小問1詳解】由題意,得,設,將代入橢圓方程,得,所以,解得,所以橢圓的方程為.【小問2詳解】當斜率不存在時,即時,,為橢圓短軸兩端點,則以為直徑的圓為,恒過點,滿足題意;當斜率存在時,設,,,由得:,,解得:,,若以為直徑的圓過點,則,即,又,,,解得:,滿足,即,此時直線的方程為綜上,存在直線使得以為直徑的圓過點,的方程為或21、(1)(2)【解析】(1)根據(jù)圓心在過點,的線段的中垂線上,同時圓心圓心在直線上,可求出圓心的坐標,進而求得半徑,最后求出其標準方程;(2)選①利用用垂徑定理可求得答案,選②根據(jù)圓上一點P到直線的最大距離為可求得答案,選③先利用向量的數(shù)量積可求得,解法就和選①時相同.【小問1詳解】由題意可知,圓心在點的中垂線上,該中垂線的方程為,于是,由,解得圓心,圓C的半徑所以,圓C的方程為;【小問2詳解】①,因為,,所以圓心C到直線l的距離,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備風險評估管理制度
- 設計單位業(yè)務管理制度
- 設計規(guī)章制度管理制度
- 診所中醫(yī)醫(yī)師管理制度
- 診所收費票據(jù)管理制度
- 試劑耗材入庫管理制度
- 財務管理公司管理制度
- 財富顧問薪金管理制度
- 貨架汽配倉庫管理制度
- 貨物道路運輸管理制度
- 安全生產(chǎn)知識應知應會
- 質(zhì) 量 管 理 體 系 認 證審核報告(模板)
- 腫瘤科新護士入科培訓和護理常規(guī)
- 體育器材采購設備清單
- 第4章 頜位(雙語)
- 二手車鑒定評估報告書最終
- 電影場記表(雙機位)
- 塔吊負荷試驗方案
- 電子商務專業(yè)“產(chǎn)教融合、五雙并行”人才培養(yǎng) 模式的實踐研究課題論文開題結(jié)題中期研究報告(經(jīng)驗交流)
- 購買社區(qū)基本公共養(yǎng)老、青少年活動服務實施方案
- 傷口和傷口敷料基礎知識.ppt
評論
0/150
提交評論