版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省武漢市達標名校高二上數(shù)學期末質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.經過點且圓心是兩直線與的交點的圓的方程為()A. B.C. D.2.對任意實數(shù)k,直線與圓的位置關系是()A.相交 B.相切C.相離 D.與k有關3.已知橢圓的兩個焦點分別為,若橢圓上不存在點,使得是鈍角,則橢圓離心率的取值范圍是()A. B.C. D.4.已知圓上有三個點到直線的距離等于1,則的值為()A. B.C. D.15.某大學數(shù)學系共有本科生1500人,其中一、二、三、四年級的人數(shù)比為,要用分層隨機抽樣的方法從中抽取一個容量為300的樣本,則應抽取的三年級學生的人數(shù)為()A.20 B.40C.60 D.806.、是橢圓的左、右焦點,點在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.47.和的等差中項與等比中項分別為()A., B.2,C., D.1,8.數(shù)列的通項公式是()A. B.C. D.9.橢圓與雙曲線有公共的焦點、,與在第一象限內交于點,是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.10.《鏡花緣》是清代文人李汝珍創(chuàng)作的長篇小說,書中有這樣一個情節(jié):一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.11.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件12.兩條平行直線與之間的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則實數(shù)m的值是___________.14.如圖,在四棱錐中,平面,底面是菱形,且,則異面直線與所成的角的余弦值為______,點到平面的距離等于______.15.已知函數(shù).(1)若的解集為,求a,b的值;(2)若,a,b均正實數(shù),求的最小值;(3)若,當時,若不等式恒成立,求實數(shù)b的值.16.已知AB為圓O:的直徑,點P為橢圓上一動點,則的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知梯形如圖甲所示,其中,,,四邊形是邊長為1正方形,沿將四邊形折起,使得平面平面,得到如圖乙所示的幾何體(1)求證:平面;(2)若點在線段上,且與平面所成角的正弦值為,求線段的長度.18.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標原點,若,求直線l的方程.19.(12分)在中,內角A,B,C對應的邊分別為a,b,c,已知.(1)求B;(2)若,,求b的值.20.(12分)若函數(shù)在區(qū)間上的最大值為9,最小值為1.(1)求a,b的值;(2)若方程在上有兩個不同的解,求實數(shù)k的取值范圍.21.(12分)求滿足下列條件的圓錐曲線的標準方程:(1)已知橢圓的焦點在x軸上且一個頂點為,離心率為;(2)求一個焦點為,漸近線方程為的雙曲線的標準方程;(3)拋物線,過其焦點斜率為1的直線交拋物線于A、B兩點,且線段AB的中點的縱坐標為2.22.(10分)(1)已知雙曲線的離心率為2,求E的漸近線方程;(2)已知F是拋物線的焦點,是C上一點,且,求C的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出圓心坐標和半徑后,直接寫出圓的標準方程.【詳解】由得,即所求圓的圓心坐標為.由該圓過點,得其半徑為1,故圓的方程為.故選:B.【點睛】本題考查了圓的標準方程,屬于基礎題.2、A【解析】判斷直線恒過定點,可知定點在圓內,即可判斷直線與圓的位置關系.【詳解】由可知,即該圓的圓心坐標為,半徑為,由可知,則該直線恒過定點,將點代入圓的方程可得,則點在圓內,則直線與圓的位置關系為相交.故選:.3、C【解析】點P取端軸的一個端點時,使得∠F1PF2是最大角.已知橢圓上不存在點P,使得∠F1PF2是鈍角,可得b≥c,利用離心率計算公式即可得出【詳解】∵點P取端軸的一個端點時,使得∠F1PF2是最大角已知橢圓上不存在點P,使得∠F1PF2是鈍角,∴b≥c,可得a2﹣c2≥c2,可得:a∴故選C【點睛】本題考查了橢圓的標準方程及其性質,考查了推理能力與計算能力,屬于中檔題.求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).4、A【解析】求出圓心和半徑,由題意可得圓心到直線的距離,列方程即可求得的值.【詳解】由圓可得圓心,半徑,因為圓上有三個點到直線的距離等于1,所以圓心到直線的距離,可得:,故選:A.5、C【解析】根據(jù)給定條件利用分層抽樣的抽樣比直接計算作答.【詳解】依題意,三年級學生的總人數(shù)為,從1500人中用分層隨機抽樣抽取容量為300的樣本的抽樣比為,所以應抽取的三年級學生的人數(shù)為.故選:C6、A【解析】延長交延長線于N,則選:A.【點睛】涉及兩焦點問題,往往利用橢圓定義進行轉化研究,而角平分線性質可轉化到焦半徑問題,兩者切入點為橢圓定義.7、C【解析】根據(jù)等差中項和等比中項的概念分別求值即可.【詳解】和的等差中項為,和的等比中項為.故選:C.8、C【解析】根據(jù)數(shù)列前幾項,歸納猜想出數(shù)列的通項公式.【詳解】依題意,數(shù)列的前幾項為:;;;……則其通項公式.故選C.【點睛】本小題主要考查歸納推理,考查數(shù)列通項公式的猜想,屬于基礎題.9、B【解析】求得,可得出,設橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設,設雙曲線的實軸長為,因為與在第一象限內交于點,是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.10、B【解析】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意求得,再由古典概型及其概率的公式,即可求解【詳解】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據(jù)題意可得,解得,則燈球的總數(shù)為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點睛】本題主要考查了古典概型及其概率的計算,其中解答中根據(jù)題意列出方程組,求得兩種燈球的數(shù)量是解答的關鍵,著重考查了運算與求解能力,屬于基礎題11、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.12、D【解析】由已知有,所以直線可化為,利用兩平行直線距離公式有,選D.點睛:本題主要考查兩平行直線間的距離公式,屬于易錯題.在用兩平行直線距離公式時,兩直線中的系數(shù)要相同,不然不能用此公式計算二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結合已知條件和空間向量的數(shù)量積的坐標公式即可求解.【詳解】因為,所以,解得.故答案為:.14、①.②.【解析】因為底面是菱形,可得,則異面直線與所成的角和與所成的角相等,即可求得異面直線與所成的角的余弦值.在底面從點向作垂線,求證垂直平面,即可求得答案.【詳解】根據(jù)題意畫出其立體圖形:如圖底面是菱形,則異面直線與所成的角和直線與所成的角相等平面,平面又,底面是菱形即故:異面直線與所成的角的余弦值為:在底面從點向作垂線平面,平面,平面故是到平面的距離故答案為:,.【點睛】本題考查了求異面直線的夾角和點到面距離,解題關鍵是掌握將求異面直線夾角轉化為共面直線夾角的解法,考查了分析能力和推理能力,屬于基礎題.15、(1),;(2);(3)【解析】(1)根據(jù)韋達定理解求得答案;(2)根據(jù)題意,,進而化簡,然后結合基本不等式解得答案;(3)討論,和x=2三種情況,進而分參轉化為求函數(shù)的最值問題,最后求得答案.【小問1詳解】由已知可知方程的兩個根為,2,由韋達定理得,,故,.【小問2詳解】由題意得,,所以,當且僅當時取等號.【小問3詳解】若,,不等式恒成立.當時,,此時,即對于恒成立,單調遞減,此時,,所以;當時,,此時,即即對于恒成立,在單調遞減,此時,所以;當x=2時,.綜上所述:.16、2【解析】方法一:通過對稱性取特殊位置,設出P的坐標,利用向量的數(shù)量積轉化求解最小值即可方法二:利用向量的數(shù)量積,轉化為向量的和與差的平方,通過圓的特殊性,轉化求解即可【詳解】解:方法一:依據(jù)對稱性,不妨設直徑AB在x軸上,x,,,從而故答案為2方法二:,而,則答案2故答案為2【點睛】本題考查直線與圓的位置關系、橢圓方程的幾何性質考查轉化思想以及計算能力三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明過程見解析;(2).【解析】(1)根據(jù)面面垂直的性質定理進行證明即可;(2)建立空間直角坐標系,利用空間向量夾角公式進行求解即可.【小問1詳解】∵平面平面,平面平面平面,,∴平面;【小問2詳解】(2)建系如圖:設平面的法向量,,,,,,則,設,,,解得或(舍),,∴.18、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.19、(1);(2).【解析】(1)利用正弦定理,將邊化角轉化,即可求得;(2)利用余弦定理,結合(1)中所求,即可求得.【小問1詳解】在中,由正弦定理得,因為,所以,所以,又因為,所以.【小問2詳解】在中,由余弦定理得,代入數(shù)據(jù)解得,所以20、(1)(2)【解析】(1)令,則,根據(jù)二次函數(shù)的性質即可求出;(2)令,方程化為,求出的變化情況即可求出.【小問1詳解】令,則,則題目等價于在的最大值為9,最小值為1,對稱軸,開口向上,則,解得;【小問2詳解】令,則,于是方程可變?yōu)椋矗驗楹瘮?shù)在單調遞減,在單調遞增,且,要使方程有兩個不同的解,則與有兩個不同的交點,所以.21、(1)(2)(3)【解析】(1)設橢圓的標準方程為,根據(jù)題意,進而結合求解即可得答案;(2)設雙曲線的方程為,進而結合題意得,,再結合解方程即可得答案;、(3)根據(jù)題意設直線的方程為,進而與拋物線聯(lián)立方程并消去得,再結合韋達定理得,進而得答案.【小問1詳解】解:根據(jù)題意,設橢圓的標準方程為,因為頂點為,離心率為,所以,所以,所以橢圓的方程為【小問2詳解】解:因為雙曲線的一個焦點為,設雙曲線的方程為,因為漸近線方程為,所以,因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款合同簡化版模版
- 青貯飼料供應合同
- 預購合同的協(xié)調機制設計
- 安全保潔服務承包合同
- 房屋及車庫買賣合同
- 泰康協(xié)議存款合同權益保護技巧
- 演出合同協(xié)議的案例
- 企業(yè)借貸合同范文
- 工程顧問咨詢合同
- 解讀采購訂單與采購合同的不同
- 蓯蓉山莊工程施工組織設計
- 電廠重大事故隱患排查清單
- 新人教版二年級上冊數(shù)學全冊教案(含教學反思)
- 鈑金件設計經驗手冊
- 管理溝通(山東聯(lián)盟-山東管理學院)知到章節(jié)答案智慧樹2023年
- 建設項目環(huán)境影響報告表56
- TCADERM 5019-2023 急性有機磷農藥中毒診治要求
- 腫瘤監(jiān)測和死因監(jiān)測5
- 消防蓄水池安全風險告知卡
- 2023屆云南省紅河州高三第一次復習統(tǒng)一檢測(一模)數(shù)學試題【含答案】
- GB/T 818-2016十字槽盤頭螺釘
評論
0/150
提交評論