2025屆福建師范大學大附屬中學高二上數(shù)學期末檢測模擬試題含解析_第1頁
2025屆福建師范大學大附屬中學高二上數(shù)學期末檢測模擬試題含解析_第2頁
2025屆福建師范大學大附屬中學高二上數(shù)學期末檢測模擬試題含解析_第3頁
2025屆福建師范大學大附屬中學高二上數(shù)學期末檢測模擬試題含解析_第4頁
2025屆福建師范大學大附屬中學高二上數(shù)學期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆福建師范大學大附屬中學高二上數(shù)學期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓,則下列結論正確的是()A.長軸長為2 B.焦距為C.短軸長為 D.離心率為2.已知等差數(shù)列的公差,是與的等比中項,則()A. B.C. D.3.若在直線上,則直線的一個方向向量為()A. B.C. D.4.如圖,在四面體中,,,兩兩垂直,已知,,則直線與平面所成角的正弦值為()A. B.C. D.5.命題“,都有”的否定為()A.,使得 B.,使得C.,使得 D.,使得6.如圖,平行六面體中,與的交點為,設,則選項中與向量相等的是()A. B.C. D.7.已知,則的大小關系為()A. B.C. D.8.設是函數(shù)的導函數(shù),的圖象如圖所示,則的解集是()A. B.C. D.9.已知數(shù)列的前n項和為,且對任意正整數(shù)n都有,若,則()A.2019 B.2020C.2021 D.202210.拋物線的準線方程是,則實數(shù)的值為()A. B.C.8 D.11.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.12.幾何學史上有一個著名的米勒問題:“設點、是銳角的一邊上的兩點,試在邊上找一點,使得最大的.”如圖,其結論是:點為過、兩點且和射線相切的圓的切點.根據以上結論解決一下問題:在平面直角坐標系中,給定兩點,,點在軸上移動,當取最大值時,點的橫坐標是()A.B.C.或D.或二、填空題:本題共4小題,每小題5分,共20分。13.展開式中,各項系數(shù)之和為1,則實數(shù)_______.(用數(shù)字填寫答案)14.下圖是4個幾何體的展開圖,圖①是由4個邊長為3的正三角形組成;圖②是由四個邊長為3的正三角形和一個邊長為3的正方形組成;圖③是由8個邊長為3的正三角形組成;圖④是由6個邊長為3的正方形組成若直徑為4的球形容器(不計容器厚度)內有一幾何體,則該幾何體的展開圖可以是______(填所有正確結論的番號)15.已知點,拋物線的焦點為,點是拋物線上任意一點,則周長的最小值是__________.16.如果點在運動過程中,總滿足關系式,記滿足此條件的點M的軌跡為C,直線與C交于D,E,已知,則周長的最大值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某廠有4臺大型機器,在一個月中,一臺機器至多出現(xiàn)1次故障,出現(xiàn)故障時需1名工人進行維修,且每臺機器是否出現(xiàn)故障是相互獨立的,每臺機器出現(xiàn)故障的概率為(1)若出現(xiàn)故障的機器臺數(shù)為X,求X的分布列;(2)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現(xiàn)故障或出現(xiàn)故障時能及時維修,都產生5萬元的利潤,否則將不產生利潤.若該廠在雇傭維修工人時,要保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%,雇傭幾名工人使該廠每月獲利最大?18.(12分)設函數(shù)(1)若,求函數(shù)的單調區(qū)間;(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍19.(12分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項公式及前n項和.20.(12分)在2021年“雙11”網上購物節(jié)期間,某電商平臺銷售了一款新手機,現(xiàn)在該電商為調查這款手機使用后的“滿意度”,從購買了該款手機的顧客中抽取1000人,每人在規(guī)定區(qū)間內給出一個“滿意度”分數(shù),評分在60分以下的視為“不滿意”,在60分到80分之間(含60分但不含80分)的視為“基本滿意”,在80分及以上的視為“非常滿意”.現(xiàn)將他們的評分按,,,,分成5組,得到如圖所示的頻率分布直方圖.(1)求這1000人中對該款手機“非常滿意”的人數(shù)和“滿意度”評分的中位數(shù)的估計值.(2)若按“滿意度”采用分層抽樣的方法從這1000名被調查者中抽取20人,再從這20人中隨機抽取3人,記這3人中對該款手機“非常滿意”的人數(shù)為X.①寫出X的分布列,并求數(shù)學期望;②若被抽取的這3人中對該款手機“非常滿意”的被調查者將獲得100元話費補貼,其他被調查者將獲得50元話費補貼,請求出這3人將獲得的話費補貼總額的期望.21.(12分)已知正項數(shù)列的首項為,且滿足,(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項和22.(10分)已知,其中.(1)若,求在處的切線方程;(2)若是函數(shù)的極小值點,求函數(shù)在區(qū)間上的最值;(3)討論函數(shù)的單調性.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長軸長為,焦距為,短軸長為,ABC選項錯誤.離心率為,D選項正確.故選:D2、C【解析】由等比中項的性質及等差數(shù)列通項公式可得即可求.【詳解】由,則,可得.故選:C.3、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D4、D【解析】利用三線垂直建立空間直角坐標系,將線面角轉化為直線的方向向量和平面的法向量所成的角,再利用空間向量進行求解.【詳解】以,,所在直線為軸,軸,軸建立空間直角坐標系(如圖所示),則,,,,,設平面的一個法向量為,則,即,令,則,,所以平面的一個法向量為;設直線與平面所成角為,則,即直線與平面所成角的正弦值為.故選:D.5、A【解析】根據命題的否定的定義判斷【詳解】全稱命題的否定是特稱命題,命題“,都有”的否定為:,使得故選:A6、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結合幾何體有,進而可知與向量相等的表達式.【詳解】連接,如下圖示:,.故選:B7、B【解析】構造利用導數(shù)判斷函數(shù)在上單調遞減,利用單調性比較大小【詳解】設恒成立,函數(shù)在上單調遞減,.故選:B8、C【解析】先由圖像分析出的正負,直接解不等式即可得到答案.【詳解】由函數(shù)的圖象可知,在區(qū)間上單調遞減,在區(qū)間(0,2)上單調遞增,即當時,;當x∈(0,2)時,.因為可化為或,解得:0<x<2或x<0,所以不等式的解集為.故選:C9、C【解析】先令代入中,求得,再根據遞推式得到,將與已知相減,可判斷數(shù)列是等比數(shù)列,進而確定,求得答案.【詳解】因為,令,則,又,故,即,故數(shù)列是等比數(shù)列,則,所以,所以,故選:C.10、B【解析】化簡方程為,求得拋物線的準線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準線方程為,因為拋物線的準線方程為,所以,解得.故選:B.11、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉化為點到準線的距離,即可求出線段中點的橫坐標,即得到答案.【詳解】由已知可得拋物線的準線方程為,設點的坐標分別為和,由拋物線的定義得,即,線段中點的橫坐標為,故線段的中點到軸的距離是.故選:.12、A【解析】根據米勒問題的結論,點應該為過點、的圓與軸的切點,設圓心的坐標為,寫出圓的方程,并將點、的坐標代入可求出點的橫坐標.【詳解】解:設圓心的坐標為,則圓的方程為,將點、的坐標代入圓的方程得,解得或(舍去),因此,點的橫坐標為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】通過給二項式中的賦值1求出展開式的各項系數(shù)和,即可求出詳解】解:令,得各項系數(shù)之和為,解得故答案為:14、①【解析】根據幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進而求其外接球半徑,并與4比較大小,即可確定答案.【詳解】若幾何體外接球球心為,半徑為,①由題設,幾何體為棱長為3的正四面體,為底面中心,則,,所以,可得,即,滿足要求;②由題設,幾何體為棱長為3的正四棱錐,為底面中心,則,所以,可得,即,不滿足要求;③由題設,幾何體為棱長為3的正八面體,其外接球直徑同棱長為3的正四棱錐,故不滿足要求;④由題設,幾何體為棱長為3的正方體,體對角線的長度即為外接球直徑,所以,不滿足要求;故答案為:①15、##【解析】利用拋物線的定義結合圖形即得.【詳解】拋物線的焦點為,準線的方程為,過點作,垂足為,則,所以的周長為,當且僅當三點共線時等號成立.故答案為:.16、8【解析】根據橢圓定義判斷出軌跡,分析條件結合橢圓定義可知當直線x=m過右焦點時,三角形ADE周長最大.【詳解】,到定點,的距離和等于常數(shù),點軌跡C為橢圓,且故其方程為,則為左焦點,因為直線與C交于D,E,則,不妨設D在軸上方,E在軸下方,設橢圓右焦點為A',連接DA',EA',因為DA'+EA'≥DE,所以DA+EA+DA'+EA'≥DA+EA+DE,即4a≥DA+EA+DE,所以△ADE的周長,當時取得最大值8,故答案為:8三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)雇傭3名【解析】(1)設出現(xiàn)故障的機器臺數(shù)為X,由題意知,即可由二項分布求解;(2)設該廠雇傭n名工人,n可取0、1、2、3、4,先求出保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%需要至少3人,再分別計算3人,4人時的獲利即可得解.【小問1詳解】每臺機器運行是否出現(xiàn)故障看作一次實驗,在一次試驗中,機器出現(xiàn)故障的概率為,4臺機器相當于4次獨立試驗設出現(xiàn)故障的機器臺數(shù)為X,則,,,,,,則X的分布列為:X01234P【小問2詳解】設該廠雇傭n名工人,n可取0、1、2、3、4,設“在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修”的概率為,則:n01234P1∵,∴至少要3名工人,才能保證在任何時刻多臺機器同時出現(xiàn)故障時能及時進行維修的概率不小于90%當該廠雇傭3名工人時,設該廠獲利為Y萬元,則Y的所有可能取值為17,12,,,∴Y的分布列為:Y1712P∴,∴該廠獲利的均值為16.9萬元當該廠雇傭4名工人時,4臺機器在任何時刻同時出現(xiàn)故障時能及時進行維修的概率為100%,該廠獲利的均值為萬元∴若該廠要保證在任何時刻多臺機器同時出現(xiàn)故障能及時進行維修的概率不小于90%時,雇傭3名工人使該廠每月獲利最大18、(1)的單調遞減區(qū)間為,單調遞增區(qū)間為;(2).【解析】(1)求出,進而判斷函數(shù)的單調性,然后討論符號后可得函數(shù)的單調區(qū)間;(2)令,則有兩個不同的零點,利用導數(shù)討論的單調性并結合零點存在定理可得實數(shù)的取值范圍.【小問1詳解】當時,,,記,則,所以在上單調遞增,又,所以當時,;當時,,所以單調遞減區(qū)間為,單調遞增區(qū)間為【小問2詳解】令,得,記,則,令得,列表得.x0↘極小值↗要使在上有兩個零點,則,所以且函數(shù)在和上各有一個零點當時,,,,則,故上無零點,與函數(shù)在上有一個零點矛盾,故不滿足條件所以,又因為,所以考慮,設,,則,則在上單調遞減,故當時,,所以,且,因為,所以,由零點存在定理知在和上各有一個零點綜上可知,實數(shù)a的取值范圍為【點睛】方法點睛:利用導數(shù)研究零點問題:(1)確定零點的個數(shù)問題:可利用數(shù)形結合的辦法判斷交點個數(shù),如果函數(shù)較為復雜,可用導數(shù)知識確定極值點和單調區(qū)間從而確定其大致圖象;(2)方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數(shù)的值域問題處理.可以通過構造函數(shù)的方法,把問題轉化為研究構造的函數(shù)的零點問題;(3)利用導數(shù)硏究函數(shù)零點或方程根,通常有三種思路:①利用最值或極值研究;②利用數(shù)形結合思想研究;③構造輔助函數(shù)硏究.19、(1),,證明見解析(2),【解析】(1)根據遞推關系求出,,對遞推公式變形,即可得證;(2)結合(1)求得通項公式,分組求和.【小問1詳解】因為,且所以,,∵,∴,∵,∴,且,∴數(shù)列是等比數(shù)列.【小問2詳解】由(1)可知是以為首項,以3為公比的等比數(shù)列,即,即;.20、(1)65分(2)①分布列答案見解析,數(shù)學期望:;②172.5元【解析】(1)由圖可知中位數(shù)在第二組,則設中位數(shù)為,從而得,解方程可得答案,(2)①由題意可求得“不滿意”與“基本滿意”的用戶應抽取17人,“非常滿意”的用戶應抽取3人,則X的可能取值分別為0,1,2,3,然后求出對應的概率,從而可求得其分布列和期望,②設這3人獲得的話費補貼總額為Y,則,然后由①結合期望的性質可求得答案【小問1詳解】這1000人中對該款手機“非常滿意”的人數(shù)為.由頻率分布直方圖可得,得分的中位數(shù)為,則,解得,所以中位數(shù)為65分.【小問2詳解】①若按“滿意度”采用分層抽樣的方法從這1000名被調查者中抽取20人,則“不滿意”與“基本滿意”的用戶應抽取人,“非常滿意”的用戶應抽

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論