版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市12校聯(lián)考2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點分別為,,點M是雙曲線右支上一點,,且,則雙曲線的離心率為()A. B.C. D.2.為迎接2022年冬奧會,某校在體育冰球課上加強冰球射門訓(xùn)練,現(xiàn)從甲、乙兩隊中各選出5名球員,并分別將他們依次編號為1,2,3,4,5進行射門訓(xùn)練,他們的進球次數(shù)如折線圖所示,則在這次訓(xùn)練中以下說法正確的是()A.甲隊球員進球的中位數(shù)比乙隊大 B.乙隊球員進球的中位數(shù)比甲隊大C.乙隊球員進球水平比甲隊穩(wěn)定 D.甲隊球員進球數(shù)的極差比乙隊小3.經(jīng)過點,且被圓所截得的弦最短時的直線的方程為()A. B.C. D.4.過拋物線()的焦點作斜率大于的直線交拋物線于,兩點(在的上方),且與準(zhǔn)線交于點,若,則A. B.C. D.5.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點M,N在大圓內(nèi)所繪出的圖形大致是A. B.C. D.6.設(shè)雙曲線C:的左、右焦點分別為,點P在雙曲線C上,若線段的中點在y軸上,且為等腰三角形,則雙曲線C的離心率為()A. B.2C. D.7.已知等比數(shù)列的各項均為正數(shù),公比,且滿足,則()A.8 B.4C.2 D.18.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A,B的距離之比為定值的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.在平面直角坐標(biāo)系中,,點P滿足,設(shè)點P的軌跡為C,下列結(jié)論正確的是()A.C的方程為B.當(dāng)A,B,P三點不共線時,面積的最大值為24C.當(dāng)A,B,P三點不共線時,射線是的角平分線D.在C上存在點M,使得9.設(shè)函數(shù),若為奇函數(shù),則曲線在點處的切線方程為()A. B.C. D.10.設(shè)直線與雙曲線(,)的兩條漸近線分別交于,兩點,若點滿足,則該雙曲線的離心率是()A. B.C. D.11.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知橢圓:,左、右焦點分別為,過的直線交橢圓于兩點,若的最大值為5,則的值是A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:,,是其左右焦點.圓:,點為雙曲線右支上的動點,點為圓上的動點,則的最小值是________.14.已知橢圓:的左右焦點分別為,為橢圓上的一點,與橢圓交于.若△的內(nèi)切圓與線段在其中點處相切,與切于,則橢圓的離心率為_______15.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________16.已知拋物線的準(zhǔn)線方程為,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)過的直線交曲線于兩點,求的取值范圍.18.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.19.(12分)已知函數(shù)(1)解不等式;(2)若不等式對恒成立,求實數(shù)m的取值范圍20.(12分)已知圓C的圓心為,且圓C經(jīng)過點(1)求圓C的一般方程;(2)若圓與圓C恰有兩條公切線,求實數(shù)m的取值范圍21.(12分)已知數(shù)列是等差數(shù)列,為其前n項和,,(1)求的通項公式;(2)若,求證:為等比數(shù)列22.(10分)已知中心在坐標(biāo)原點O的橢圓,左右焦點分別為,,離心率為,M,N分別為橢圓的上下頂點,且滿足.(1)求橢圓方程;(2)已知點C滿足,點T在橢圓上(T異于橢圓的頂點),直線NT與以C為圓心的圓相切于點P,若P為線段NT的中點,求直線NT的方程;(3)過橢圓內(nèi)的一點D(0,t),作斜率為k的直線l,與橢圓交于A,B兩點,直線OA,OB的斜率分別是,,若對于任意實數(shù)k,存在實數(shù)m,使得,求實數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因為,,所以在中,邊上的中線等于的一半,所以.因為,所以可設(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A2、C【解析】根據(jù)折線圖,求出甲乙中位數(shù)、平均數(shù)及方差、極差,即可判斷各選項的正誤.【詳解】由題圖,甲隊數(shù)據(jù)從小到大排序為,乙隊數(shù)據(jù)從小到大排序為,所以甲乙兩隊的平均數(shù)都為5,甲、乙進球中位數(shù)相同都為5,A、B錯誤;甲隊方差為,乙隊方差為,即,故乙隊球員進球水平比甲隊穩(wěn)定,C正確.甲隊極差為6,乙隊極差為4,故甲隊極差比乙隊大,D錯誤.故選:C3、C【解析】當(dāng)是弦中點,她能時,弦長最短.由此可得直線斜率,得直線方程【詳解】根據(jù)題意,圓心為,當(dāng)與直線垂直時,點被圓所截得的弦最短,此時,則直線的斜率,則直線的方程為,變形可得,故選:C.【點睛】本題考查直線與圓相交弦長問題,掌握垂徑定理是求解圓弦長問題的關(guān)鍵4、A【解析】分別過作準(zhǔn)線的垂線,垂足分別為,設(shè),則,,故選A.5、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的倍,可知的中點是小圓轉(zhuǎn)動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內(nèi)壁上滾動,圓心轉(zhuǎn)過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.6、A【解析】根據(jù)是等腰直角三角形,再表示出的長,利用三角形的幾何性質(zhì)即可求得答案.【詳解】線段的中點在y軸上,設(shè)的中點為M,因為O為的中點,所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.7、A【解析】根據(jù)是等比數(shù)列,則通項為,然后根據(jù)條件可解出,進而求得【詳解】由為等比數(shù)列,不妨設(shè)首項為由,可得:又,則有:則故選:A8、C【解析】根據(jù)題意可求出C的方程為,即可根據(jù)題意判斷各選項的真假【詳解】對A,由可得,化簡得,即,A錯誤;對B,當(dāng)A,B,P三點不共線時,點到直線的最大距離為,所以面積的最大值為,B錯誤;對C,當(dāng)A,B,P三點不共線時,因為,所以射線是的角平分線,C正確;對D,設(shè),由可得點的軌跡方程為,而圓與圓的圓心距為,兩圓內(nèi)含,所以這樣的點不存在,D錯誤故選:C9、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,利用點斜式即可求出結(jié)果【詳解】函數(shù)的定義域為,若為奇函數(shù),則則,即,所以,所以函數(shù),可得;所以曲線在點處的切線的斜率為,則曲線在點處的切線方程為,即故選:C10、C【解析】先求出,的坐標(biāo),再求中點坐標(biāo),利用點滿足,可得,從而求雙曲線的離心率.【詳解】解:由雙曲線方程可知,漸近線為,分別于聯(lián)立,解得:,,所以中點坐標(biāo)為,因為點滿足,所以,所以,即,所以.故選:C.【點睛】本題考查雙曲線的離心率,考查直線與雙曲線的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.11、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.12、D【解析】由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當(dāng)AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點在x軸上,∵過F1的直線l交橢圓于A,B兩點,則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,此時|AB|=b2,則5=8﹣b2,解得b,故選D【點睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用雙曲線定義,將的最小值問題轉(zhuǎn)化為的最小值問題,然后結(jié)合圖形可解.【詳解】由題設(shè)知,,,,圓的半徑由點為雙曲線右支上的動點知∴∴.故答案為:14、【解析】利用橢圓及三角形內(nèi)切圓的性質(zhì)可得、,結(jié)合等邊三角形的性質(zhì)得的大小,在△中應(yīng)用余弦定理得到a、c的齊次式,即可求離心率.【詳解】由題意知:由內(nèi)切圓的性質(zhì)得:,由橢圓的性質(zhì),而,∴,∴由內(nèi)切圓的性質(zhì)得:再由橢圓的性質(zhì),得:,由此,△為等邊三角形,可得,在△中,由余弦定理得:,解得,則,故答案為:.15、【解析】根據(jù)題意可以設(shè),求其導(dǎo)數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進而可知在上的單調(diào)性,由可知的零點,最后分類討論即可.【詳解】設(shè),則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;若,則;若,則或,解得或或;則的解集為.故答案為:.16、【解析】由準(zhǔn)線方程的表達式構(gòu)建方程,求得答案.【詳解】因為準(zhǔn)線方程為,所以故答案為:4【點睛】本題考查拋物線中準(zhǔn)線的方程表示,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意,結(jié)合離心率易,知雙曲線為等軸雙曲線,進而可求解;(2)根據(jù)題意,分直線斜率否存在兩種情形討論,結(jié)合設(shè)而不求法以及向量數(shù)量積的坐標(biāo)公式,即可求解.【小問1詳解】根據(jù)題意,由離心率為,知雙曲線是等軸雙曲線,所以,故雙曲線的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)直線斜率存在時,設(shè)直線的方程為,則由消去,得到,∵直線與雙曲線交于M、N兩點,,解得.設(shè),則有,,因此,∵,∴且,故或,故;②當(dāng)直線的斜率不存在時,此時,易知,,故.綜上所述,所求的取值范圍是.18、(1),△的面積為;(2).【解析】(1)應(yīng)用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關(guān)系可得,即可求目標(biāo)式的值.【小問1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問2詳解】由(1)得:,由正弦定理得:,則,所以.19、(1)(2)【解析】(1)移項,兩邊平方即可獲解;(2)利用絕對值不等式即可.【小問1詳解】即即,即即即或所以不等式的解集為【小問2詳解】由題知對恒成立因為.所以,解得即或,所以實數(shù)的取值范為20、(1)(2)【解析】(1)設(shè)圓C的一般方程為.由圓C的圓心和圓C經(jīng)過點求解;(2)根據(jù)圓與圓C恰有兩條公切線,由圓O與圓C相交求解.【小問1詳解】解:設(shè)圓C的一般方程為∵圓C的圓心,∴即又圓C經(jīng)過點,∴解得經(jīng)檢驗得圓C的一般方程為;【小問2詳解】由(1)知圓C的圓心為,半徑為5∵圓與圓C恰有兩條公切線,∴圓O與圓C相交∴∵,∴∴m的取值范圍是21、(1)(2)證明見解析【解析】(1)由已知條件列出關(guān)于的方程組,解方程組求出,從而可求出的通項公式,(2)由(1)可得,然后利用等比數(shù)列的定義證明即可【小問1詳解】設(shè)數(shù)列的公差為,則由,,得,解得,所以【小問2詳解】證明:由(1)得,所以,()所以數(shù)列是以9為公比,27為首項的等比數(shù)列22、(1)1(2)或(3)【解析】(1)由已知可得,,再結(jié)合可求出,從而可求得橢圓方程,(2)設(shè)直線,代入橢圓方程中消去,解方程可求出點的坐標(biāo),從而可得NT中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款合同服務(wù)協(xié)議書(2篇)
- 吉林長春外國語學(xué)校2025屆高三上學(xué)期期中考試化學(xué)試卷試題及答案解析
- 豐田汽車租賃合同
- 債權(quán)融資服務(wù)合同
- 停車場地出租合同
- 八年級語文上冊第四單元寫作語言要連貫教案新人教版1
- 六年級數(shù)學(xué)上冊5圓綜合與實踐確定起跑線教案新人教版
- 2024年金融科技公司應(yīng)收賬款質(zhì)押業(yè)務(wù)合作協(xié)議3篇
- 2025年硫代硫酸鹽項目發(fā)展計劃
- 第2課 第二次鴉片戰(zhàn)爭(解析版)
- 《駱駝祥子》1-24章每章練習(xí)題及答案
- 《伊利乳業(yè)集團盈利能力研究》文獻綜述3000字
- 國際金融課后習(xí)題答案(吳志明第五版)第1-9章
- 《基于杜邦分析法周大福珠寶企業(yè)盈利能力分析報告(6400字)》
- 全國英語等級考試三級全真模擬試題二-2023修改整理
- 02R112 拱頂油罐圖集
- 減鹽防控高血壓培訓(xùn)課件
- 英語課presentation中國麻將-Chinese-mahjong
- GB/T 8571-2008復(fù)混肥料實驗室樣品制備
- GB/T 25344-2010中華人民共和國鐵路線路名稱代碼
- GB/T 1885-1998石油計量表
評論
0/150
提交評論