版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長沙市K郡雙語實(shí)驗(yàn)中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列命題錯(cuò)誤的是()A,B.命題“”的否定是“”C.設(shè),則“且”是“”的必要不充分條件D.設(shè),則“”是“”的必要不充分條件2.若,則下列結(jié)論不正確的是()A. B.C. D.3.如圖,在棱長為的正方體中,為線段的中點(diǎn),為線段的中點(diǎn),則直線到直線的距離為()A. B.C. D.4.已知全集,集合,,則()A. B.C. D.5.若數(shù)列對(duì)任意滿足,下面選項(xiàng)中關(guān)于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列6.設(shè),則“”是“直線與直線”平行的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件7.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°8.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽(yù)為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個(gè)正方形中畫一個(gè)圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標(biāo)系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.9.已知隨機(jī)變量X,Y滿足,,且,則的值為()A.0.2 B.0.3C.0..5 D.0.610.已知,則下列說法錯(cuò)誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是11.已知雙曲線,則雙曲線的離心率為()A. B.C. D.12.已知橢圓與雙曲線有共同的焦點(diǎn),則()A.14 B.9C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù),若,則的值等于_______14.點(diǎn)到直線的距離為_______.15.如圖,已知橢圓E的方程為(a>b>0),A為橢圓的左頂點(diǎn),B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓的離心率等于________16.若等比數(shù)列的前n項(xiàng)和為,且,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),且存在兩個(gè)極值點(diǎn)、,其中.(1)求實(shí)數(shù)的取值范圍;(2)若恒成立,求最小值.18.(12分)在①,;②,;③,.這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中.問題:已知數(shù)列的前n項(xiàng)和為,,___________.(1)求數(shù)列的通項(xiàng)公式(2)已知,求數(shù)列的前n項(xiàng)和.19.(12分)已知數(shù)列是遞增的等差數(shù)列,,若成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和,求.20.(12分)某校從高三年級(jí)學(xué)生中隨機(jī)抽取名學(xué)生的某次數(shù)學(xué)考試成績,將其成績分成,,,,的組,制成如圖所示的頻率分布直方圖.(1)求圖中的值;(2)估計(jì)這組數(shù)據(jù)的平均數(shù);(3)若成績?cè)趦?nèi)的學(xué)生中男生占.現(xiàn)從成績?cè)趦?nèi)的學(xué)生中隨機(jī)抽取人進(jìn)行分析,求人中恰有名女生的概率.21.(12分)已知函數(shù)(1)求函數(shù)在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值22.(10分)已知命題:對(duì)任意實(shí)數(shù)都有恒成立;命題:關(guān)于的方程有實(shí)數(shù)根(1)若命題為假命題,求實(shí)數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意,對(duì)四個(gè)選項(xiàng)一一進(jìn)行分析,舉出例子當(dāng)時(shí),,即可判斷A選項(xiàng);根據(jù)特稱命題的否定為全稱命題,可判斷B選項(xiàng);根據(jù)充分條件和必要條件的定義,即可判斷CD選項(xiàng).【詳解】解:對(duì)于A,當(dāng)時(shí),,,故A正確;對(duì)于B,根據(jù)特稱命題的否定為全稱命題,得“”的否定是“”,故B正確;對(duì)于C,當(dāng)且時(shí),成立;當(dāng)時(shí),卻不一定有且,如,因此“且”是“”的充分不必要條件,故C錯(cuò)誤;對(duì)于D,因?yàn)楫?dāng)時(shí),有可能等于0,當(dāng)時(shí),必有,所以“”是“”的必要不充分條件,故D正確.故選:C.2、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來判斷各選項(xiàng)中不等式的正誤.【詳解】,,,,A選項(xiàng)正確;,B選項(xiàng)錯(cuò)誤;由基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,,則等號(hào)不成立,所以,C選項(xiàng)正確;,,D選項(xiàng)正確.故選:B.【點(diǎn)睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.3、C【解析】連接,,,,在平面中,作,為垂足,將兩平行線的距離轉(zhuǎn)化成點(diǎn)到直線的距離,結(jié)合余弦定理即同角三角函數(shù)基本關(guān)系,求得,因此可得,進(jìn)而可得直線到直線的距離;【詳解】解:如圖,連接,,,,在平面中,作,為垂足,因?yàn)?,分別為,的中點(diǎn),因?yàn)?,,所以,所以,同理,所以四邊形是平行四邊形,所以,所以即為直線到直線的距離,在三角形中,由余弦定理得因?yàn)椋允卿J角,所以,在直角三角形中,,故直線到直線的距離為;故選:C4、A【解析】先求,然后求.【詳解】,,.故選:A5、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯(cuò)誤;若,當(dāng)時(shí),數(shù)列是等差數(shù)列,當(dāng)時(shí),數(shù)列是等比數(shù)列,則A錯(cuò)誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯(cuò)誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D6、D【解析】由兩直線平行確定參數(shù)值,根據(jù)充分必要條件的定義判斷【詳解】時(shí),兩直線方程分別為,,它們重合,不平行,因此不是充分條件;反之,兩直線平行時(shí),,解得或,由上知時(shí),兩直線不平行,時(shí),兩直線方程分別為,,平行,因此,本題中也不是必要條件故選:D7、B【解析】根據(jù)三棱柱的特征補(bǔ)全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補(bǔ)全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B8、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個(gè)圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進(jìn)而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點(diǎn),因?yàn)槊恳欢螆A弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點(diǎn)的連線平行于軸,因?yàn)橄乱欢螆A弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C9、D【解析】利用正態(tài)分布的計(jì)算公式:,【詳解】且又故選:D10、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項(xiàng)即可判斷作答.【詳解】對(duì)于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對(duì)于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯(cuò)誤;對(duì)于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D11、D【解析】由雙曲線的方程及雙曲線的離心率即可求解.【詳解】解:因?yàn)殡p曲線,所以,所以雙曲線的離心率,故選:D.12、C【解析】根據(jù)給定條件結(jié)合橢圓、雙曲線方程的特點(diǎn)直接列式計(jì)算作答.【詳解】設(shè)橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點(diǎn),則在雙曲線中,,即有,解得,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對(duì)函數(shù)進(jìn)行求導(dǎo),把代入導(dǎo)函數(shù)中,化簡即可求出的值.【詳解】函數(shù).故答案為:.14、【解析】應(yīng)用點(diǎn)線距離公式求點(diǎn)線距離.【詳解】由題設(shè),點(diǎn)到距離為.故答案為:15、【解析】首先利用橢圓的對(duì)稱性和為平行四邊形,可以得出、兩點(diǎn)是關(guān)于軸對(duì)稱,進(jìn)而得到;設(shè),,,從而求出,然后由,利用,求得,最后根據(jù)得出離心率【詳解】解:是與軸重合的,且四邊形為平行四邊形,所以、兩點(diǎn)的縱坐標(biāo)相等,、的橫坐標(biāo)互為相反數(shù),、兩點(diǎn)是關(guān)于軸對(duì)稱的由題知:四邊形為平行四邊形,所以可設(shè),,代入橢圓方程解得:設(shè)為橢圓的右頂點(diǎn),,四邊形為平行四邊形對(duì)點(diǎn):解得:根據(jù):得:故答案為:16、5【解析】根據(jù)題意和等比數(shù)列的求和公式,求得,結(jié)合求和公式,即可求解.【詳解】因?yàn)?,若時(shí),可得,故,所以,化簡得,整理得,解得或,因?yàn)椋獾?,所?故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)存在兩個(gè)極值點(diǎn),等價(jià)于其導(dǎo)函數(shù)有兩個(gè)相異零點(diǎn);(2)適當(dāng)構(gòu)造函數(shù),并注意與關(guān)系,轉(zhuǎn)化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個(gè)極值點(diǎn)、,且,關(guān)于的方程,即在內(nèi)有兩個(gè)不等實(shí)根,令,,即,,實(shí)數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個(gè)極值點(diǎn),由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設(shè),則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查導(dǎo)函數(shù),函數(shù)的單調(diào)性,最值,不等式證明,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是將恒成立,轉(zhuǎn)化為恒成立,化簡,令,則化為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值即可,屬于較難題18、(1)(2)【解析】(1)選①,利用化已知等式為,得是等差數(shù)列,公差,求出其通項(xiàng)公式后,再由求得通項(xiàng)公式,注意;選②,由可變形已知條件得是等差數(shù)列,從而求得通項(xiàng)公式;選③,已知式兩邊同除以,得出,以下同選①;(2)由錯(cuò)位相減法求和【小問1詳解】選①,由得,,所以,即,所以是等差數(shù)列,公差,又,,,所以,,時(shí),也適合所以;選②,由得,所以等差數(shù)列,公差為,又,所以;選③,由得,以下同選①,【小問2詳解】由(1),,,兩式相減得,所以19、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意列出方程組,求得的值,即可求解;(2)由(1)求得,結(jié)合“裂項(xiàng)法”即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)?,若成等比?shù)列,可得,解得,所以數(shù)列的通項(xiàng)公式為.(2)由(1)可得,所以.【點(diǎn)睛】關(guān)于數(shù)列的裂項(xiàng)法求和的基本策略:1、基本步驟:裂項(xiàng):觀察數(shù)列的通項(xiàng),將通項(xiàng)拆成兩項(xiàng)之差的形式;累加:將數(shù)列裂項(xiàng)后的各項(xiàng)相加;消項(xiàng):將中間可以消去的項(xiàng)相互抵消,將剩余的有限項(xiàng)相加,得到數(shù)列的前項(xiàng)和.2、消項(xiàng)的規(guī)律:消項(xiàng)后前邊剩幾項(xiàng),后邊就剩幾項(xiàng),前邊剩第幾項(xiàng),后邊就剩倒數(shù)第幾項(xiàng).20、(1)(2)77(3)【解析】(1)根據(jù)給定條件結(jié)合頻率分布直方圖中各小矩形面積和為1的特點(diǎn)列式計(jì)算即得.(2)利用頻率分布直方圖求平均數(shù)的方法直接列式計(jì)算即得.(3)求出成績?cè)趦?nèi)的學(xué)生及男女生人數(shù),再用列舉法即可求出概率.【小問1詳解】由頻率分布直方圖得,解得,所以圖中值是0.020.【小問2詳解】由頻率分布直方圖得這組數(shù)據(jù)的平均數(shù):,所以這組數(shù)據(jù)的平均數(shù)為77.【小問3詳解】數(shù)學(xué)成績?cè)趦?nèi)的人數(shù)為(人),其中男生人數(shù)為(人),則女生人數(shù)為人,記名男生分別為,,名女生分別為,,,從數(shù)學(xué)成績?cè)趦?nèi)的人中隨機(jī)抽取人進(jìn)行分析的基本事件為:,共個(gè)不同結(jié)果,它們等可能,其中人中恰有名女生的基本事件為,共種結(jié)果,所以人中恰有名女生的概率為為.21、(1)+1;(2)單調(diào)增區(qū)間,單調(diào)減區(qū)間是和,極大值為,極小值為【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求出切線斜率,求出后利用點(diǎn)斜式即可得解;(2)求出函數(shù)導(dǎo)數(shù)后,解一元二次不等式分別求出、時(shí)的取值范圍即可得解.【詳解】(1)因?yàn)椋?,∴切線方程為,即+1;(2),所以當(dāng)或時(shí),,當(dāng)時(shí),,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版二年級(jí)上冊(cè)美術(shù)教案
- 人教版五年級(jí)下冊(cè)音樂備課
- 巨人的花園課件
- DB11-T 2020-2022 高質(zhì)量團(tuán)體標(biāo)準(zhǔn)評(píng)價(jià)規(guī)范
- DB11-T 1873-2021 裝配式低層住宅輕鋼框架-組合墻結(jié)構(gòu)技術(shù)標(biāo)準(zhǔn)
- 企業(yè)接待室裝修合同
- 醫(yī)療器械海運(yùn)租船協(xié)議
- 農(nóng)貿(mào)市場改造廢料清運(yùn)合同
- 親子樂園裝修分包樣本
- 歷史建筑修復(fù)完工合同模板
- 2024年《建筑節(jié)能》理論考試題庫(濃縮500題)
- 民航安全實(shí)訓(xùn)報(bào)告
- 中職語文文學(xué)常識(shí)專題試題
- 手術(shù)室交叉感染預(yù)防措施
- 呼吸科慢阻肺教學(xué)查房(模板)
- 孫子兵法中的思維智慧2065203 知到智慧樹網(wǎng)課答案
- 2024年高考數(shù)學(xué)模擬試題(江蘇省適用)(含答案)
- 跨文化溝通心理學(xué)-知到答案、智慧樹答案
- 勞動(dòng)課學(xué)期教學(xué)計(jì)劃
- 遼寧省沈陽市鐵西區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期中考試地理試卷+
- 湖南省長沙市湖南師大附中教育集團(tuán)2023-2024學(xué)年七年級(jí)下學(xué)期期中數(shù)學(xué)試題
評(píng)論
0/150
提交評(píng)論