版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江省“七彩陽光”新2025屆數(shù)學高三第一學期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.若復數(shù)滿足,則()A. B. C. D.3.已知各項都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.4.設復數(shù)滿足,在復平面內(nèi)對應的點為,則()A. B. C. D.5.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁6.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=07.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個結論:①在上單調(diào)遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④8.函數(shù)的定義域為()A.或 B.或C. D.9.函數(shù)的圖象可能為()A. B.C. D.10.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,211.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.12.命題“”的否定為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________14.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____15.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側面積的最大值為__________.16.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設,函數(shù).(1)當時,求在內(nèi)的極值;(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.18.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對于任意的,都存在,使得成立,求實數(shù)的取值范圍.19.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a20.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數(shù)的取值范圍.21.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.22.(10分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.2、C【解析】
化簡得到,,再計算復數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.3、A【解析】試題分析:設公差為或(舍),故選A.考點:等差數(shù)列及其性質(zhì).4、B【解析】
設,根據(jù)復數(shù)的幾何意義得到、的關系式,即可得解;【詳解】解:設∵,∴,解得.故選:B【點睛】本題考查復數(shù)的幾何意義的應用,屬于基礎題.5、C【解析】
分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.6、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉(zhuǎn)化成“1”即可求出漸進方程.屬于基礎題.7、A【解析】
先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點情況得解.【詳解】因為函數(shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點問題,意在考查學生對這些知識的理解掌握水平.8、A【解析】
根據(jù)偶次根式被開方數(shù)非負可得出關于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域為或.故選:A.【點睛】本題考查具體函數(shù)定義域的求解,考查計算能力,屬于基礎題.9、C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎題.10、C【解析】
先求出集合U,再根據(jù)補集的定義求出結果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點睛】本題考查集合補集的運算,求解的關鍵是正確求出集合U和熟悉補集的定義,屬于簡單題.11、B【解析】
由可得,所以,故選B.12、C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
令,結合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點睛】本題主要考查了函數(shù)奇偶性的應用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.14、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.15、【解析】
由題意欲使圓柱側面積最大,需使圓柱內(nèi)接于圓錐.設圓柱的高為h,底面半徑為r,則,將側面積表示成關于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側面積最大,需使圓柱內(nèi)接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【點睛】本題考查圓柱的側面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉(zhuǎn)化為函數(shù)的最值問題.16、156【解析】
先考慮每班安排的老師人數(shù),然后計算出對應的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【點睛】本題考查排列組合的綜合應用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進行分析.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極大值是,無極小值;(2)【解析】
(1)當時,可求得,令,利用導數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單調(diào)遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時,不等式恒成立,即.當時,恒成立,即,令,易證是上的減函數(shù).因此,當時,,故.當時,恒成立,即,因此,當時,所以.綜上所述,.【點睛】本題考查利用導數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識,考查分類討論思想、轉(zhuǎn)化思想,考查學生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.18、(1)(2)【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據(jù)分段函數(shù)解析式,求得的取值范圍,結合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點睛】本小題考查了絕對值不等式,絕對值三角不等式和函數(shù)最值問題,考查運算求解能力,推理論證能力,化歸與轉(zhuǎn)化思想.19、(I)an=2n-1,bn=【解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學生對于數(shù)列公式方法的綜合應用.20、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時,根據(jù)絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數(shù)的取值范圍是【點睛】本題考查了絕對值不等式的解法與應用問題,也考查了函數(shù)絕對值三角不等式的應用問題,屬于常規(guī)題型.21、見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數(shù)學期望.(2)由題可得,所以,又,,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初一散步課件教學課件
- 笑死人的腦筋急轉(zhuǎn)彎三十個
- 5年中考3年模擬試卷初中道德與法治八年級下冊03第四單元素養(yǎng)綜合檢測
- 2024-2025學年專題15.2 電流和電路-九年級物理人教版含答案
- DB11-T 1832.14-2022 建筑工程施工工藝規(guī)程 第14部分:供暖工程
- 住宅區(qū)土石方居間合作協(xié)議
- 體育場館水泥供應合同模板
- 親子樂園活潑裝修門牌協(xié)議
- 公路綠化養(yǎng)護居間合同
- 倉儲物流借款融資居間合同
- 學校、家庭、社會三位一體育人網(wǎng)絡圖(共2頁)
- 醫(yī)院動態(tài)血糖監(jiān)測規(guī)范標準
- 臨近基坑地鐵保護方案
- 學校關于體育傳統(tǒng)項目工作的管理辦法和規(guī)章制度
- 2022年廣東省深圳市南山外國語學校高三英語期末試題含解析
- 物質(zhì)的輸入和輸出.PPT
- 大班繪本:喜歡鐘表的國王ppt課件
- 部編版五年級語文上冊第四單元單元內(nèi)容分析
- 工程維修承諾書范本
- 產(chǎn)品開發(fā)流程(參考APQP)
- 食物中膽固醇含量對照表精編版
評論
0/150
提交評論