版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版高中數(shù)學(xué)選修2-2PAGEPAGE1課時(shí)作業(yè)2:2.3數(shù)學(xué)歸納法一、選擇題(每小題5分,共20分)1.一個(gè)關(guān)于自然數(shù)n的命題,如果驗(yàn)證當(dāng)n=1時(shí)命題成立,并在假設(shè)當(dāng)n=k(k≥1且k∈N*)時(shí)命題成立的基礎(chǔ)上,證明了當(dāng)n=kA.一切正整數(shù)命題成立B.一切正奇數(shù)命題成立C.一切正偶數(shù)命題成立D.以上都不對(duì)2.在數(shù)列{an}中,an=1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+…+eq\f(1,2n-1)-eq\f(1,2n),則ak+1=()A.a(chǎn)k+eq\f(1,2k+1)B.a(chǎn)k+eq\f(1,2k+2)-eq\f(1,2k+4)C.a(chǎn)k+eq\f(1,2k+2)D.a(chǎn)k+eq\f(1,2k+1)-eq\f(1,2k+2)3.設(shè)平面內(nèi)有k條直線,其中任何兩條不平行,任何三條不共點(diǎn),設(shè)k條直線的交點(diǎn)個(gè)數(shù)為f(k),則f(k+1)與f(k)的關(guān)系是(A.fB.C.D.4.用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),x2+y2能被x+yA.假設(shè)n=2k+1(k∈N*B.假設(shè)n=2k-1(k∈N*C.假設(shè)n=k(k∈N*)正確,再推D.假設(shè)n=k(k≥1)正確,再推二、填空題(每小題5分,共10分)5.用數(shù)學(xué)歸納法證明1+2+3+…+6.利用數(shù)學(xué)歸納法證明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1),n∈N三、解答題(共70分)7.(15分)對(duì)于n∈N*,用數(shù)學(xué)歸納法證明:1·n8.(20分)已知正項(xiàng)數(shù)列{an}和{bn}(1)證明:對(duì)任意n∈N*,有an+bn=(2)求數(shù)列{an}9.(20分)數(shù)列{an}滿足Sn=2n-an(n∈N*(1)計(jì)算a1,a2,a3,a4,并由此猜想通項(xiàng)公式a(2)用數(shù)學(xué)歸納法證明(1)中的猜想.10.(15分)已知點(diǎn)Pn(an,bn)滿足an+1=an·bn+1,bn+1=bn1-4an2((1)求過(guò)點(diǎn)P1,P2的直線l的方程;(2)試用數(shù)學(xué)歸納法證明:對(duì)于n∈N*,點(diǎn)Pn都在(1)中的直線l2.3數(shù)學(xué)歸納法答題紙得分:選擇題二、填空題5.6.三、解答題7.8.9.10.2.3數(shù)學(xué)歸納法[答案]一、選擇題1[答案]B[解析]本題證的是對(duì)n=1,3,5,7,…命題成立,即命題對(duì)一切正奇數(shù)成立.2[解析]D[答案]a1=1-eq\f(1,2),a2=1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4),…,an=1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+…+eq\f(1,2n-1)-eq\f(1,2n),ak=1-eq\f(1,2)+eq\f(1,3)-eq\f(1,4)+…+eq\f(1,2k-1)-eq\f(1,2k),所以,ak+1=ak+eq\f(1,2k+1)-eq\f(1,2k+2).3[答案]C[解析]當(dāng)n=k+1時(shí),任取其中1條直線,記為l,則除l外的其他k條直線的交點(diǎn)的個(gè)數(shù)為f(k),因?yàn)橐阎魏蝺蓷l直線不平行,所以直線l必與平面內(nèi)其他k條直線都相交(有k個(gè)交點(diǎn));又因?yàn)橐阎魏稳龡l直線不過(guò)同一點(diǎn),所以上面的k個(gè)交點(diǎn)兩兩不相同,且與平面內(nèi)其他的f(k)個(gè)交點(diǎn)也兩兩不相同,從而平面內(nèi)交點(diǎn)的個(gè)數(shù)是f(k)4[解析]首先要注意n為奇數(shù),其次還要使n=2k-二、填空題5[答案]k[解析]n=n=k6[答案]22k[解析]當(dāng)當(dāng)時(shí)(k則左邊應(yīng)增乘的式子是2(2k+三、計(jì)算題7[解析]設(shè)f(n)(1)當(dāng)n=1時(shí),左邊=1,右邊=1(2)設(shè)當(dāng)n=k則當(dāng)n=fk=eq\f(1,6)=eq\f(1,6)∴由(1)(2)可知當(dāng)n∈8[解析](1)證明:用數(shù)學(xué)歸納法證明.①當(dāng)n=1時(shí),a1②假設(shè)n=k(k≥1且k∈N*)時(shí)命題成立,即ak+bk=1,則當(dāng)n=k+1時(shí),ak+1+bk+1=a∴當(dāng)n=由①、②可知,an+bn=1對(duì)(2)∵an+1=anb∴1an+1即1a數(shù)列{1an}是公差為1的等差數(shù)列,其首項(xiàng)為1a1an=1a+(n-1)×19[解析](1)a1=1,a2=eq\f(3,2),a3=eq\f(7,4),a4=eq\f(15,8),由此猜想an==2n-12n-1((2)證明:當(dāng)n=1時(shí),a1假設(shè)n=k(k≥1,且即ak=eq\f(2k-1,2k-1),那么n=k+1(k≥1ak+1=Sk+1-Sk-Sk=2(k+1)-ak+1-2k+∴2ak+1=2+ak,∴ak+1=2+ak2=2+這表明n=∴an=2n-12n-1(n∈10[解析](1)由P1的坐標(biāo)為(1,-1)知a1=1,b1=-∴b2=eq\f(b1,1-4a12)=eq\f(1,3).a2=a1·b2=eq\f(1,3).∴點(diǎn)P2的坐標(biāo)為(eq\f(1,3),eq\f(1,3))∴直線l的方程為2(2)證明:①當(dāng)n=2a1+b1=2×1+(-1)=1②假設(shè)n=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 6378.3-2024計(jì)量抽樣檢驗(yàn)程序第3部分:按接收質(zhì)量限(AQL)檢索的逐批檢驗(yàn)的二次抽樣方案
- 遼寧省撫順市新?lián)釁^(qū)2024-2025學(xué)年九年級(jí)上學(xué)期第一次教學(xué)質(zhì)量檢測(cè)化學(xué)試卷含答案
- 湖北省隨州市廣水市第二高級(jí)中學(xué)2024-2025學(xué)年高三上學(xué)期10月月考數(shù)學(xué)試題(含答案)
- 2024年度上海市高校教師資格證之高等教育法規(guī)題庫(kù)檢測(cè)試卷A卷附答案
- 贛南師范大學(xué)《計(jì)量地理學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《裝飾繪畫(huà)》2021-2022學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《小學(xué)生心理健康教育》2023-2024學(xué)年第一學(xué)期期末試卷
- 阜陽(yáng)師范大學(xué)《創(chuàng)新創(chuàng)業(yè)教育專題》2021-2022學(xué)年第一學(xué)期期末試卷
- 粵教版四年級(jí)下冊(cè)全書(shū)科學(xué)教案
- 無(wú)錫市2024-2025學(xué)年三年級(jí)上學(xué)期11月期中調(diào)研數(shù)學(xué)試卷二(有答案)
- 高中生心理健康教育課教案(15篇)
- 公司隱私保護(hù)管理制度
- 幼兒園教育指導(dǎo)綱要考題及答案
- 2023-2024學(xué)年全國(guó)初中八年級(jí)上政治人教版期中考卷(含答案解析)
- 客戶服務(wù)和關(guān)系維護(hù)方案三篇
- 油菜管理高產(chǎn)技術(shù)研究報(bào)告
- Braden壓力性損傷風(fēng)險(xiǎn)評(píng)估量表
- 2024春期國(guó)開(kāi)電大本科《古代小說(shuō)戲曲》在線形考(形考任務(wù)1至4)試題及答案
- 小班期末測(cè)評(píng)計(jì)劃及總結(jié)下學(xué)期
- 形勢(shì)與政策(論當(dāng)前國(guó)際形勢(shì)和中國(guó)外交)
- 第六章常微分方程
評(píng)論
0/150
提交評(píng)論