2025屆山東省淄博市數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2025屆山東省淄博市數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2025屆山東省淄博市數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2025屆山東省淄博市數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2025屆山東省淄博市數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東省淄博市數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認為莞草是蒲草的二倍長所需要的天數(shù)是()(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)A. B. C. D.2.的展開式中含的項的系數(shù)為()A. B.60 C.70 D.803.已知函數(shù).設(shè),若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.4.已知向量,,則與共線的單位向量為()A. B.C.或 D.或5.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件6.若函數(shù)的圖象上兩點,關(guān)于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.7.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.38.已知實數(shù),,函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.9.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb10.已知三棱柱()A. B. C. D.11.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.12.若復(fù)數(shù)滿足,則對應(yīng)的點位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像,則函數(shù)在區(qū)間上的值域為__________.14.設(shè)為數(shù)列的前項和,若,,且,,則________.15.在棱長為的正方體中,是面對角線上兩個不同的動點.以下四個命題:①存在兩點,使;②存在兩點,使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.16.從2、3、5、7、11、13這六個質(zhì)數(shù)中任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡分數(shù)表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當直線經(jīng)過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設(shè)直線的斜率分別是,當直線的縱截距為1時,有數(shù)列滿足,設(shè)數(shù)列的前n項和為,已知存在正整數(shù)使得,求m的值.18.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵工人提高技術(shù),工廠進行技術(shù)大賽,最后甲乙兩人進入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.19.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當x>0時,若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實數(shù)a的取值范圍.20.(12分)已知,,且.(1)求的最小值;(2)證明:.21.(12分)為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機構(gòu)從全國各城市中抽取了100個相同等級地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺”有關(guān).業(yè)績突出城市業(yè)績不突出城市總計外賣甲外賣乙總計(2)由頻率分布直方圖可以認為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國各城市中隨機抽取6個城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個數(shù),求的數(shù)學(xué)期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動來提升業(yè)績,據(jù)統(tǒng)計,開展此活動后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個城市不開展營銷活動,若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個城市中開展營銷活動將比不開展營銷活動每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.22.(10分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長度,進而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.2、B【解析】

展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數(shù)項和項相乘得到,所以的展開式中含的項的系數(shù)為.故選:B【點睛】本題考查了二項式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.3、D【解析】

求解的導(dǎo)函數(shù),研究其單調(diào)性,對任意不相等的正數(shù),構(gòu)造新函數(shù),討論其單調(diào)性即可求解.【詳解】的定義域為,,當時,,故在單調(diào)遞減;不妨設(shè),而,知在單調(diào)遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調(diào)遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【點睛】此題考查含參函數(shù)研究單調(diào)性問題,根據(jù)參數(shù)范圍化簡后構(gòu)造新函數(shù)轉(zhuǎn)換為含參恒成立問題,屬于一般性題目.4、D【解析】

根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標運算以及共線定理和單位向量的定義.5、A【解析】

畫出“,,,所表示的平面區(qū)域,即可進行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.6、D【解析】

由題可知,可轉(zhuǎn)化為曲線與有兩個公共點,可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點,關(guān)于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于較難題.7、B【解析】

設(shè)直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關(guān)系,考查韋達定理及向量的坐標之間的關(guān)系,考查計算能力,屬于中檔題.8、D【解析】

根據(jù)題意,對于函數(shù)分2段分析:當,由指數(shù)函數(shù)的性質(zhì)分析可得①,當,由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,

當,若為增函數(shù),則①,

當,若為增函數(shù),必有在上恒成立,

變形可得:,

又由,可得在上單調(diào)遞減,則,

若在上恒成立,則有②,

若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③

聯(lián)立①②③可得:.

故選:D.【點睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).9、B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.10、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=11、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問題,是求和還是求項.12、D【解析】

利用復(fù)數(shù)模的計算、復(fù)數(shù)的除法化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對應(yīng)的點,對應(yīng)的點位于復(fù)平面的第四象限.故選:D.【點睛】本題考查復(fù)數(shù)模的計算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)圖像的平移變換得到函數(shù)的解析式,再利用整體思想求函數(shù)的值域.【詳解】函數(shù)的圖像向右平移個單位得,,,.故答案為:.【點睛】本題考查三角函數(shù)圖像的平移變換、值域的求解,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意整體思想的運用.14、【解析】

由題可得,解得,所以,,上述兩式相減可得,即,因為,所以,即,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以.15、①③④【解析】

對于①中,當點與點重合,與點重合時,可判斷①正確;當點點與點重合,與直線所成的角最小為,可判定②不正確;根據(jù)平面將四面體可分成兩個底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個底面和在四個側(cè)面上的投影,均為定值,可判定④正確.【詳解】對于①中,當點與點重合,與點重合時,,所以①正確;對于②中,當點點與點重合,與直線所成的角最小,此時兩異面直線的夾角為,所以②不正確;對于③中,設(shè)平面兩條對角線交點為,可得平面,平面將四面體可分成兩個底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對于④中,四面體在上下兩個底面上的投影是對角線互相垂直且對角線長度均為1的四邊形,其面積為定義,四面體在四個側(cè)面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點睛】本題主要考查了以空間幾何體的結(jié)構(gòu)特征為載體的謎題的真假判定及應(yīng)用,其中解答中涉及到棱柱的集合特征,異面直線的關(guān)系和椎體的體積,以及投影的綜合應(yīng)用,著重考查了推理與論證能力,屬于中檔試題.16、【解析】

依據(jù)古典概型的計算公式,分別求“任取兩個數(shù)”和“任取兩個數(shù),和是質(zhì)數(shù)”的事件數(shù),計算即可。【詳解】“任取兩個數(shù)”的事件數(shù)為,“任取兩個數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是。【點睛】本題主要考查古典概型的概率求法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)設(shè)出直線的方程,再與拋物線聯(lián)立方程組,進而求得點的坐標,結(jié)合弦長即可求得拋物線的方程;(2)設(shè)直線的方程,運用韋達定理可得,可得之間的關(guān)系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設(shè)過拋物線焦點的直線方程為,與拋物線方程聯(lián)立得:,設(shè),所以,,,所以拋物線方程為(2)設(shè)直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關(guān)系,考查了韋達定理和運用裂項法求數(shù)列的和,考查了運算能力,屬于中檔題.18、(1)乙的技術(shù)更好,見解析(2)①,;②【解析】

(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設(shè)每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【詳解】(1)記甲乙各生產(chǎn)一件零件給工廠帶來的效益分別為元、元,隨機變量,的分布列分別為10521052所以,,所以,即乙的技術(shù)更好(2)①表示的是甲得分時,甲最終獲勝的概率,所以,表示的是甲得4分時,甲最終獲勝的概率,所以;②設(shè)每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時,最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數(shù)列,則,即決賽甲獲勝的概率是.【點睛】本題考查離散型隨機變量的分布列和期望,考查數(shù)列遞推關(guān)系的應(yīng)用,是一道難度較大的題目.19、(Ⅰ);(Ⅱ)?!窘馕觥?/p>

(Ⅰ)分類討論,去掉絕對值,求得原絕對值不等式的解集;(Ⅱ)由條件利用基本不等式求得,,再由,求得的范圍.【詳解】(Ⅰ)當時,原不等式可化為,此時不成立;當時,原不等式可化為,解得,即;當時,原不等式可化為,解得.綜上,原不等式的解集是.(Ⅱ)因為,當且僅當時等號成立,所以.當時,,所以.所以,解得,故實數(shù)的取值范圍為.【點睛】本題主要考查了絕對值不等式的解法,以及轉(zhuǎn)化與化歸思想,難度一般;常見的絕對值不等式的解法,法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.20、(1)(2)證明見解析【解析】

(1)利用基本不等式即可求得最小值;(2)關(guān)鍵是配湊系數(shù),進而利用基本不等式得證.【詳解】(1),當且僅當“”時取等號,故的最小值為;(2),當且僅當時取等號,此時.故.【點睛】本題主要考查基本不等式的運用,屬于基礎(chǔ)題.21、(1)見解析,有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺”有關(guān).(2)①4.911②100萬元.【解析】

(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個外賣平臺中月訂單不低于13萬件的城市數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論