重慶市銅梁縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第1頁(yè)
重慶市銅梁縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第2頁(yè)
重慶市銅梁縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第3頁(yè)
重慶市銅梁縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第4頁(yè)
重慶市銅梁縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市銅梁縣第一中學(xué)2025屆數(shù)學(xué)高三第一學(xué)期期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則A. B. C. D.2.設(shè)是虛數(shù)單位,則“復(fù)數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件3.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.4.設(shè)是等差數(shù)列,且公差不為零,其前項(xiàng)和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長(zhǎng)為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺6.復(fù)數(shù)滿(mǎn)足,則復(fù)數(shù)等于()A. B. C.2 D.-27.在中,,,,則邊上的高為()A. B.2 C. D.8.若實(shí)數(shù)滿(mǎn)足的約束條件,則的取值范圍是()A. B. C. D.9.如圖,點(diǎn)E是正方體ABCD-A1B1C1D1的棱DD1的中點(diǎn),點(diǎn)F,M分別在線段AC,BD1(不包含端點(diǎn))上運(yùn)動(dòng),則()A.在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,存在EF//BC1B.在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值10.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.11.港珠澳大橋于2018年10月2刻日正式通車(chē),它是中國(guó)境內(nèi)一座連接香港、珠海和澳門(mén)的橋隧工程,橋隧全長(zhǎng)55千米.橋面為雙向六車(chē)道高速公路,大橋通行限速100km/h,現(xiàn)對(duì)大橋某路段上1000輛汽車(chē)的行駛速度進(jìn)行抽樣調(diào)查.畫(huà)出頻率分布直方圖(如圖),根據(jù)直方圖估計(jì)在此路段上汽車(chē)行駛速度在區(qū)間[85,90)的車(chē)輛數(shù)和行駛速度超過(guò)90km/h的頻率分別為()A.300, B.300, C.60, D.60,12.下圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位向量的夾角為,則=_________.14.內(nèi)角,,的對(duì)邊分別為,,,若,則__________.15.已知“在中,”,類(lèi)比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.16.執(zhí)行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù)有兩個(gè)極值點(diǎn),.(1)求實(shí)數(shù)的取值范圍;(2)證明:.19.(12分)已知函數(shù).(1)當(dāng)時(shí),不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.20.(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線的極坐標(biāo)方程為,射線的極坐標(biāo)方程為.(Ⅰ)寫(xiě)出曲線的極坐標(biāo)方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求面積的取值范圍.21.(12分)已知橢圓的右焦點(diǎn)為,離心率為.(1)若,求橢圓的方程;(2)設(shè)直線與橢圓相交于、兩點(diǎn),、分別為線段、的中點(diǎn),若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.22.(10分)設(shè)復(fù)數(shù)滿(mǎn)足(為虛數(shù)單位),則的模為_(kāi)_____.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類(lèi)問(wèn)題時(shí)要先將參與運(yùn)算的集合化為最簡(jiǎn)形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.2、D【解析】

結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項(xiàng).【詳解】若復(fù)數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時(shí)復(fù)數(shù),不是純虛數(shù),所以“復(fù)數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點(diǎn)睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.3、B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.4、A【解析】

根據(jù)等差數(shù)列的前項(xiàng)和公式以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項(xiàng)和為,充分性:,則對(duì)任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當(dāng)時(shí),,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對(duì)任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當(dāng)時(shí),,此時(shí),,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項(xiàng)和公式是解決本題的關(guān)鍵,屬于中等題.5、A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:

沿上棱兩端向底面作垂面,且使垂面與上棱垂直,

則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,

則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.6、B【解析】

通過(guò)復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡(jiǎn)求解即可.【詳解】復(fù)數(shù)滿(mǎn)足,∴,故選B.【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長(zhǎng)的概念,屬于基礎(chǔ)題.7、C【解析】

結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長(zhǎng),由此求得邊上的高.【詳解】過(guò)作,交的延長(zhǎng)線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.8、B【解析】

根據(jù)所給不等式組,畫(huà)出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿(mǎn)足的約束條件,畫(huà)出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過(guò)原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過(guò)時(shí),截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡(jiǎn)單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.9、C【解析】

采用逐一驗(yàn)證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯(cuò)誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯(cuò)誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點(diǎn)到平面的距離,由//,平面,平面所以//平面,則點(diǎn)到平面的距離即點(diǎn)到平面的距離,所以為定值,故四面體EMAC的體積為定值錯(cuò)誤由//,平面,平面所以//平面,則點(diǎn)到平面的距離即為點(diǎn)到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點(diǎn)睛】本題考查線面、線線之間的關(guān)系,考驗(yàn)分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.10、C【解析】

求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.11、B【解析】

由頻率分布直方圖求出在此路段上汽車(chē)行駛速度在區(qū)間的頻率即可得到車(chē)輛數(shù),同時(shí)利用頻率分布直方圖能求行駛速度超過(guò)的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車(chē)行駛速度在區(qū)間的頻率為,∴在此路段上汽車(chē)行駛速度在區(qū)間的車(chē)輛數(shù)為:,行駛速度超過(guò)的頻率為:.故選:B.【點(diǎn)睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.12、D【解析】

根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

因?yàn)閱挝幌蛄康膴A角為,所以,所以==.14、【解析】∵,∴,即,∴,∴.15、【解析】

類(lèi)比,三角形邊長(zhǎng)類(lèi)比三棱錐各面的面積,三角形內(nèi)角類(lèi)比三棱錐中側(cè)棱與面所成角.【詳解】,故,【點(diǎn)睛】本題考查類(lèi)比推理.類(lèi)比正弦定理可得,類(lèi)比時(shí)有結(jié)構(gòu)類(lèi)比,方法類(lèi)比等.16、【解析】初始條件成立方;運(yùn)行第一次:成立;運(yùn)行第二次:不成立;輸出的值:結(jié)束所以答案應(yīng)填:考點(diǎn):1、程序框圖;2、定積分.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(1)分類(lèi)討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)椋裕?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)椋?,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.18、(1)(2)證明見(jiàn)解析【解析】

(1)先求得導(dǎo)函數(shù),根據(jù)兩個(gè)極值點(diǎn)可知有兩個(gè)不等實(shí)根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點(diǎn)的情況,即可由零點(diǎn)的情況確定的取值范圍;(2)根據(jù)極值點(diǎn)定義可知,,代入不等式化簡(jiǎn)變形后可知只需證明;構(gòu)造函數(shù),并求得,進(jìn)而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進(jìn)而可得,即可由函數(shù)性質(zhì)得,進(jìn)而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因?yàn)榇嬖趦蓚€(gè)極值點(diǎn),,所以有兩個(gè)不等實(shí)根.設(shè),所以.①當(dāng)時(shí),,所以在上單調(diào)遞增,至多有一個(gè)零點(diǎn),不符合題意.②當(dāng)時(shí),令得,0減極小值增所以,即.又因?yàn)?,,所以在區(qū)間和上各有一個(gè)零點(diǎn),符合題意,綜上,實(shí)數(shù)的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因?yàn)?,,所?設(shè),則,所以在上是增函數(shù),在上是減函數(shù).因?yàn)椋环猎O(shè),設(shè),,則,當(dāng)時(shí),,,所以,所以在上是增函數(shù),所以,所以,即.因?yàn)?,所以,所?因?yàn)?,,且在上是減函數(shù),所以,即,所以原命題成立,得證.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),由導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)法的綜合應(yīng)用,極值點(diǎn)偏移證明不等式成立的應(yīng)用,是高考的常考點(diǎn)和熱點(diǎn),屬于難題.19、(1);(2)證明見(jiàn)解析.【解析】

(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當(dāng)時(shí),方程的,因此在區(qū)間上恒為負(fù)數(shù).所以時(shí),,函數(shù)在區(qū)間上單調(diào)遞減.又,所以函數(shù)在區(qū)間上恒成立;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根,且滿(mǎn)足,所以函數(shù)的導(dǎo)函數(shù)在區(qū)間上大于零,函數(shù)在區(qū)間上單增,又,所以函數(shù)在區(qū)間上恒大于零,不滿(mǎn)足題意;當(dāng)時(shí),在區(qū)間上,函數(shù)在區(qū)間上恒為正數(shù),所以在區(qū)間上恒為正數(shù),不滿(mǎn)足題意;綜上可知:若時(shí),不等式恒成立,的最小值為.(2)由第(1)知:若時(shí),.若,則,即成立.將換成,得成立,即,以此類(lèi)推,得,,上述各式相加,得,又,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)恒成立

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論