版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
黑龍江哈爾濱師范大學(xué)附中2025屆數(shù)學(xué)高二上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-92.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)到與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列、這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23則該數(shù)列的第100項為()A.4862 B.4962C.4852 D.49523.“,”是“方程表示雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米5.已知雙曲線=1的一條漸近線方程為x-4y=0,其虛軸長為()A.16 B.8C.2 D.16.命題“”的一個充要條件是()A. B.C. D.7.若數(shù)列滿足,,則數(shù)列的通項公式為()A. B.C. D.8.已知正方形的四個頂點都在橢圓上,若的焦點F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.9.已知函數(shù)(且,)的一個極值點為2,則的最小值為()A. B.C. D.710.已知空間向量,,則()A. B.19C.17 D.11.已知呈線性相關(guān)的變量x與y的部分?jǐn)?shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.712.中國古代數(shù)學(xué)著作算法統(tǒng)宗中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見首日行里數(shù),請公仔細(xì)算相還.”其大意為:有一個人走里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,恰好走了天到達(dá)目的地,則該人第一天走的路程為()A.里 B.里C.里 D.里二、填空題:本題共4小題,每小題5分,共20分。13.圓與x軸相切于點A.點B在圓C上運(yùn)動,則AB的中點M的軌跡方程為______(當(dāng)點B運(yùn)動到與A重合時,規(guī)定點M與點A重合);點N是直線上一點,則的最小值為______14.已知函數(shù)f(x)=ex-2x+a有零點,則a的取值范圍是___________15.如圖,棱長為2的正方體中,E,F(xiàn)分別為棱、的中點,G為面對角線上一個動點,則三棱錐的外接球表面積的最小值為___________.16.曲線在點處的切線方程為_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知平面直角坐標(biāo)系上一動點滿足:到點的距離是到點的距離的2倍.(1)求點的軌跡方程;(2)若點與點關(guān)于直線對稱,求的最大值.18.(12分)已知與定點,的距離比為的點P的軌跡為曲線C,過點的直線l與曲線C交于M,N兩點.(1)求曲線C的軌跡方程;(2)若,求.19.(12分)如圖,在直三棱柱中,,是中點.(1)求點到平面的的距離;(2)求平面與平面夾角的余弦值;20.(12分)已知拋物線C的對稱軸是y軸,點在曲線C上.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)過拋物線焦點的傾斜角為直線l與拋物線交于A、B兩點,求線段AB的長度.21.(12分)已知等比數(shù)列前3項和為(1)求的通項公式;(2)若對任意恒成立,求m的取值范圍22.(10分)已知是等差數(shù)列,,.(1)求的通項公式;(2)若數(shù)列是公比為的等比數(shù)列,,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)平行直線的性質(zhì),結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】因為直線:與:平行,所以有,因為兩條平行直線:與:間距離為3,所以,或,當(dāng)時,;當(dāng)時,,故選:A2、D【解析】根據(jù)題意可得數(shù)列2,3,5,8,12,17,23,,滿足:,,從而利用累加法即可求出,進(jìn)一步即可得到的值【詳解】2,3,5,8,12,17,23,后項減前項可得1,2,3,4,5,6,所以,所以.所以.故選:D3、A【解析】根據(jù)雙曲線的方程以及充分條件和必要條件的定義進(jìn)行判斷即可【詳解】由,可知方程表示焦點在軸上的雙曲線;反之,若表示雙曲線,則,即,或,所以“,”是“方程表示雙曲線”的充分不必要條件故選:A4、B【解析】以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,設(shè)雙曲線標(biāo)準(zhǔn)方程為:(a>0),則頂點,,將A點代入雙曲線方程得,,當(dāng)水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.5、C【解析】根據(jù)雙曲線的漸近線方程的特點,結(jié)合虛軸長的定義進(jìn)行求解即可.【詳解】因為雙曲線=1的一條漸近線方程為x-4y=0,所以,因此該雙曲線的虛軸長為,故選:C6、D【解析】結(jié)合不等式的基本性質(zhì),利用充分條件和必要條件的定義判斷.【詳解】A.當(dāng)時,滿足,推不出,故不充分;B.當(dāng)時,滿足,推不出,故不充分;C.當(dāng)時,推不出,故不必要;D.因為,故充要,故選:D7、B【解析】根據(jù)等差數(shù)列的定義和通項公式直接得出結(jié)果.【詳解】因為,所以數(shù)列是等差數(shù)列,公差為1,所以.故選:B8、C【解析】如圖由題可得,進(jìn)而可得,即求.【詳解】如圖根據(jù)對稱性,點D在直線y=x上,可設(shè),則,∴,可得,,即,又解得.故選:C.9、B【解析】求出函數(shù)的導(dǎo)數(shù),由給定極值點可得a與b的關(guān)系,再借助“1”的妙用求解即得.【詳解】對求導(dǎo)得:,因函數(shù)的一個極值點為2,則,此時,,,因,即,因此,在2左右兩側(cè)鄰近的區(qū)域值一正一負(fù),2是函數(shù)的一個極值點,則有,又,,于是得,當(dāng)且僅當(dāng),即時取“=”,所以的最小值為.故選:B10、D【解析】先求出的坐標(biāo),再求出其?!驹斀狻恳驗?,,所以,故,故選:D.11、A【解析】根據(jù)回歸直線過樣本點的中心進(jìn)行求解即可.【詳解】由題意可得,,則,解得故選:A.12、C【解析】建立等比數(shù)列的模型,由等比數(shù)列的前項和公式求解【詳解】記第天走的路程為里,則是等比數(shù)列,,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】將點M的軌跡轉(zhuǎn)化為以AC為直徑的圓,再確定圓心及半徑即可求解,將的最小值轉(zhuǎn)化為點到圓心的距離再減去半徑可求解.【詳解】依題意得,,因為M為AB中點,所以,所以點M的軌跡是以AC為直徑的圓,又AC中點為,,所以點M的軌跡方程為,圓心,設(shè)關(guān)于直線的對稱點為,則有,解得,所以,所以由對稱性可知的最小值為故答案為:,14、【解析】根據(jù)零點定義,分離出,構(gòu)造函數(shù),通過研究的值域來確定的取值范圍【詳解】根據(jù)零點定義,則所以令則,令解得當(dāng)時,,函數(shù)單調(diào)遞減當(dāng)時,,函數(shù)單調(diào)遞增所以當(dāng)時取得最小值,最小值為所以由零點的條件為所以,即的取值范圍為【點睛】本題考查了函數(shù)零點的意義,通過導(dǎo)數(shù)求函數(shù)的值域,分離參數(shù)法的應(yīng)用,屬于中檔題15、【解析】以DA,DC,分別為x軸,y軸,z軸建系,則,設(shè),球心,得到外接球半徑關(guān)于的函數(shù)關(guān)系,求出的最小值,即可得到答案;【詳解】解:以DA,DC,分別為x軸,y軸,z軸建系.則,設(shè),球心,,又.聯(lián)立以上兩式,得,所以時,,為最小值,外接球表面積最小值為.故答案為:.16、【解析】求導(dǎo),求出切線斜率,進(jìn)而寫出切線方程.【詳解】,則,故切斜方程為:,即故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)直接法求動點的軌跡方程,設(shè)點,列方程即可.(2)點關(guān)于直線對稱的對稱點問題,可以先求出點到直線的距離最值的兩倍就是的距離,也可以求出點的軌跡方程直接求解的距離.【小問1詳解】設(shè),由題意,得:,化簡得,所以點軌跡方程為【小問2詳解】方法一:設(shè),因為點與點關(guān)于點對稱,則點坐標(biāo)為,因為點在圓,即上運(yùn)動,所以,所以點的軌跡方程為,所以兩圓的圓心分別為,半徑均為2,則.方法二:由可得:所以點的軌跡是以為圓心,2為半徑的圓軌跡的圓心到直線的距離為:18、(1)(2)或【解析】(1)設(shè)曲線上的任意一點,由題意可得,化簡即可得出(2)分直線的斜率不存在與存在兩種情況討論,當(dāng)斜率不存在時,即可求出、的坐標(biāo),從而求出,當(dāng)直線的斜率存在,設(shè)直線方程為,,,聯(lián)立直線與圓的方程,消元列出韋達(dá)定理,則,即可求出,從而求出直線方程,由圓心在直線上,即可求出弦長;【小問1詳解】解:(1)設(shè)曲線上的任意一點,由題意可得:,即,整理得【小問2詳解】解:依題意當(dāng)直線的斜率不存在時,直線方程為,則,則或,即、,所以、,所以滿足條件,此時,當(dāng)直線的斜率存在,設(shè)直線方程為,,,則,消去整理得,由,解得或,所以、,因為,,所以,解得,所以直線方程為,又直線過圓心,所以,綜上可得或;19、(1)(2)【解析】(1)以為原點,為軸,為軸,為軸建立空間直角坐標(biāo)系,求出平面的法向量為,再利用公式計算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計算即可小問1詳解】解:(1)以為原點,為軸,為軸,為軸建立空間直角坐標(biāo)系所以因為,設(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點到平面的距離為,則,所以點到平面的的距離的距離為;【小問2詳解】(2)因為平面,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值20、(1)(2)16【解析】(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為:,再代入求解即可.(2)根據(jù)焦點弦公式求解即可.【小問1詳解】由題意知拋物線C的對稱軸是y軸,點在曲線C上,所以拋物線開口向上,設(shè)拋物線的標(biāo)準(zhǔn)方程為:,代入點的坐標(biāo)得:,解得則拋物線的標(biāo)準(zhǔn)方程為:.【小問2詳解】焦點,則直線的方程是,設(shè),,由得,,所以,則,故.21、(1)(2)【解析】(1)由等比數(shù)列的基本量,列式,即可求得首項和公比,再求通項公式;(2)由題意轉(zhuǎn)化為求數(shù)列的前項和的最大值,即可求參數(shù)的取值范圍.【小問1詳解】設(shè)等比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度云南省高校教師資格證之高等教育心理學(xué)過關(guān)檢測試卷A卷附答案
- 2024年軍迷用品項目資金需求報告代可行性研究報告
- 贛南師范大學(xué)《世界地理》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛南師范大學(xué)《廣播電視采訪與寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 阜陽師范大學(xué)《外國教育史》2021-2022學(xué)年第一學(xué)期期末試卷
- 人教版二年級上冊體育教案
- 福建師范大學(xué)協(xié)和學(xué)院《品牌管理》2022-2023學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《數(shù)學(xué)分析》2021-2022學(xué)年第一學(xué)期期末試卷
- W179 全自動彈簧拉壓力試驗機(jī)維護(hù)規(guī)程
- 福建師范大學(xué)《國際法》2021-2022學(xué)年第一學(xué)期期末試卷
- 青山處處埋忠骨 教案
- 投標(biāo)書服裝范文
- 3.6《推動社會發(fā)展的印刷術(shù)》課件
- 《百合花》《哦香雪》聯(lián)讀+探究詩化特征
- 小學(xué)道法二 我自豪 我是中國人課件
- 小學(xué)部編版五年級語文上冊教案(全)
- 高中體育與健康-足球變向運(yùn)球教學(xué)課件設(shè)計
- 中印邊境自衛(wèi)反擊戰(zhàn)
- 管道試壓方案樣本
- 供電局電網(wǎng)預(yù)防雨雪冰凍災(zāi)害應(yīng)急預(yù)案
- 內(nèi)在激勵與外在激勵ppt
評論
0/150
提交評論