河南省重點中學2025屆數(shù)學高三上期末經(jīng)典試題含解析_第1頁
河南省重點中學2025屆數(shù)學高三上期末經(jīng)典試題含解析_第2頁
河南省重點中學2025屆數(shù)學高三上期末經(jīng)典試題含解析_第3頁
河南省重點中學2025屆數(shù)學高三上期末經(jīng)典試題含解析_第4頁
河南省重點中學2025屆數(shù)學高三上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省重點中學2025屆數(shù)學高三上期末經(jīng)典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上單調(diào)遞增,則實數(shù)的取值范圍是()A. B. C. D.2.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.3.某學校調(diào)查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是17.5,30],樣本數(shù)據(jù)分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據(jù)直方圖,這200名學生中每周的自習時間不少于22.5小時的人數(shù)是()A.56 B.60 C.140 D.1204.若集合,,則A. B. C. D.5.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.06.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.7.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或78.設(shè)復數(shù),則=()A.1 B. C. D.9.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)10.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行11.已知,則()A.2 B. C. D.312.已知集合,,則集合子集的個數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實數(shù)x,y滿足,則點表示的區(qū)域面積為______.14.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應(yīng)該為__________.15.直線(,)過圓:的圓心,則的最小值是______.16.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.18.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項,第3項,第4項.(1)求數(shù)列和的通項公式;(2)若數(shù)列滿足,求數(shù)列的前2020項的和.19.(12分)在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點為,當變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系,設(shè)射線的極坐標方程為,,點為射線與曲線的交點,求點的極徑.20.(12分)已知△ABC的兩個頂點A,B的坐標分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.21.(12分)△的內(nèi)角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.22.(10分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設(shè)與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

對分類討論,當,函數(shù)在單調(diào)遞減,當,根據(jù)對勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當時,函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點睛】本題考查函數(shù)單調(diào)性,熟練掌握簡單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.2、B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.3、C【解析】

試題分析:由題意得,自習時間不少于小時的頻率為,故自習時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應(yīng)用.4、C【解析】

解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.5、B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.6、C【解析】

將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎(chǔ)題.7、C【解析】

根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎(chǔ)題.8、A【解析】

根據(jù)復數(shù)的除法運算,代入化簡即可求解.【詳解】復數(shù),則故選:A.【點睛】本題考查了復數(shù)的除法運算與化簡求值,屬于基礎(chǔ)題.9、C【解析】

根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項A,函數(shù),故錯誤;選項B,函數(shù)為非奇非偶函數(shù),故錯誤;選項C,函數(shù)是以1為周期的周期函數(shù),故正確;選項D,函數(shù)在區(qū)間上是增函數(shù),但在整個定義域范圍上不具備單調(diào)性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.10、B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學生的綜合應(yīng)用能力.11、A【解析】

利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數(shù)值的求法,考查對數(shù)的運算和對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時注意函數(shù)性質(zhì)的合理應(yīng)用.12、B【解析】

首先求出,再根據(jù)含有個元素的集合有個子集,計算可得.【詳解】解:,,,子集的個數(shù)為.故選:.【點睛】考查列舉法、描述法的定義,以及交集的運算,集合子集個數(shù)的計算公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先畫出滿足條件的平面區(qū)域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.14、【解析】

根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.15、;【解析】

求出圓心坐標,代入直線方程得的關(guān)系,再由基本不等式求得題中最小值.【詳解】圓:的標準方程為,圓心為,由題意,即,∴,當且僅當,即時等號成立,故答案為:.【點睛】本題考查用基本不等式求最值,考查圓的標準方程,解題方法是配方法求圓心坐標,“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.16、【解析】

真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關(guān)于的不等量關(guān)系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點睛】本題考查對數(shù)型復合函數(shù)的性質(zhì),熟練掌握基本初等函數(shù)的性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.18、(1),;(2).【解析】

(1)根據(jù)題意同時利用等差、等比數(shù)列的通項公式即可求得數(shù)列和的通項公式;(2)求出數(shù)列的通項公式,再利用錯位相減法即可求得數(shù)列的前2020項的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因為①當時,②由①②得,,即,又當時,不滿足上式,.數(shù)列的前2020項的和設(shè)③,則④,由③④得:,所以,所以.【點睛】本題考查等差數(shù)列和等比數(shù)列的通項公式、性質(zhì),錯位相減法求和,考查學生的邏輯推理能力,化歸與轉(zhuǎn)化能力及綜合運用數(shù)學知識解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數(shù)學運算.是中檔題.19、(1);(2)【解析】

(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設(shè)Q點的直角坐標系坐標為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設(shè)Q點的直角坐標系坐標為,由可得代入曲線C的方程可得,解得(舍),所以點的極徑為.【點睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標方程,極徑的求法,屬于中檔題.20、(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】

(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(1)因為圓E為△ABC的內(nèi)切圓,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|所以點C的軌跡為以點A和點B為焦點的橢圓(點不在軸上),所以c,a=2,b,所以曲線G的方程為,(2)因為,故四邊形為平行四邊形.當直線l的斜率不存在時,則四邊形為為菱形,故直線MN的方程為x=﹣1或x=1,此時可求得四邊形OMDN的面積為.當直線l的斜率存在時,設(shè)直線l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2,x1x2,△=8(4k2+2﹣m2)>0,∴y1+y2=k(x1+x2)+2m,|MN|點O到直線MN的距離d,由,得xD,yD,∵點D在曲線C上,所以將D點坐標代入橢圓方程得1+2k2=2m2,由題意四邊形OMDN為平行四邊形,∴OMDN的面積為S,由1+2k2=2m2得S,故四邊形OMDN的面積是定值,其定值為.【點睛】本小題主要考查用定義法求軌跡方程,考查橢圓中四邊形面積的計算,考查橢圓中的定值問題,考查運算求解能力,屬于中檔題.21、(I);(II).【解析】

試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點:1、解三角形;2、三角恒等變換.22、(1),;(2)見解析.【解析】

(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論