2025屆福建廈門灌口中學(xué)數(shù)學(xué)高二上期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是橢圓上的任意一點,過點作圓:的切線,設(shè)其中一個切點為,則的取值范圍為()A. B.C. D.2.已知O為坐標(biāo)原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當(dāng)取得最小值時,點Q的坐標(biāo)為()A. B.C. D.3.已知命題P:,,則命題P的否定為()A., B.,C., D.,4.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當(dāng)取最大值時的值為()A. B.C. D.5.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點為,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.6.雙曲線與橢圓的焦點相同,則等于()A.1 B.C.1或 D.27.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.8.命題:“,”的否定形式為()A., B.,C., D.,9.在等比數(shù)列中,,則等于()A. B.C. D.10.圓與圓的交點為A,B,則線段AB的垂直平分線的方程是A. B.C. D.11.命題“存在,使得”為真命題的一個充分不必要條件是()A. B.C. D.12.在拋物線上,橫坐標(biāo)為4的點到焦點的距離為5,則p的值為()A. B.2C.1 D.4二、填空題:本題共4小題,每小題5分,共20分。13.方程表示雙曲線,則實數(shù)k的取值范圍是___________.14.如圖,四邊形為直角梯形,且,為正方形,且平面平面,,,,則______,直線與平面所成角的正弦值為______15.已知函數(shù),是的導(dǎo)函數(shù),則______16.一個物體的運動方程為其中位移的單位是米,時間的單位是秒,那么物體在秒末的瞬時速度是__________米/秒三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,數(shù)列的前n項和為滿足.(1)證明:數(shù)列為等比數(shù)列;(2)在和中插入k個數(shù)構(gòu)成一個新數(shù)列:,2,,4,6,,8,10,12,,…,其中插入的所有數(shù)依次構(gòu)成首項和公差都為2的等差數(shù)列.求數(shù)列的前50項和.18.(12分)已知數(shù)列{an}的首項a1=1,且an+1=(n∈N*).(1)證明:數(shù)列是等比數(shù)列;(2)設(shè)bn=-,求數(shù)列{bn}的前n項和Sn.19.(12分)已知拋物線C:經(jīng)過點.(1)求拋物線C的方程及其準線方程;(2)經(jīng)過拋物線C的焦點F的直線l與拋物線交于兩點M,N,且與拋物線的準線交于點Q.若,求直線l的方程.20.(12分)已知命題p:點在橢圓內(nèi);命題q:函數(shù)在R上單調(diào)遞增(1)若p為真命題,求m的取值范圍;(2)若為假命題,求實數(shù)m的取值范圍21.(12分)已知,,且,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因為,所以,即,故選:B2、C【解析】設(shè),用表示出,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得當(dāng)時,取得最小值,從而求得點的坐標(biāo).【詳解】設(shè),則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當(dāng)λ=時,取得最小值,此時==,即點Q的坐標(biāo)為.故選:C3、B【解析】根據(jù)特稱命題的否定變換形式即可得出結(jié)果【詳解】命題:,,則命題的否定為,故選:B4、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設(shè)為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當(dāng)且僅當(dāng),即,時等號成立,此時故選:D5、A【解析】根據(jù)雙曲線的幾何性質(zhì)和平面幾何性質(zhì),建立關(guān)于a,b,c的方程,從而可求得雙曲線的離心率得選項.【詳解】由題意可設(shè)右焦點為,因為,且圓:,所以點在以焦距為直徑的圓上,則,設(shè)的中點為點,則為的中位線,所以,則,又點在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點睛】方法點睛:(1)求雙曲線的離心率時,將提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,利用和轉(zhuǎn)化為關(guān)于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對于焦點三角形,要注意雙曲線定義的應(yīng)用,運用整體代換的方法可以減少計算量6、A【解析】根據(jù)雙曲線方程形式確定焦點位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因為雙曲線的焦點在軸上,所以橢圓焦點在軸上,依題意得解得.故選:A7、D【解析】經(jīng)判斷點在圓內(nèi),與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內(nèi),連接,當(dāng)時,弦長最短,,所以弦長,當(dāng)過圓心時,最長等于直徑8,所以的取值范圍是故選:D8、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.9、C【解析】根據(jù),然后與,可得,最后簡單計算,可得結(jié)果.【詳解】在等比數(shù)列中,由所以,又,所以所以故選:C【點睛】本題考查等比數(shù)列的性質(zhì),重在計算,當(dāng),在等差數(shù)列中有,在等比數(shù)列中,靈活應(yīng)用,屬基礎(chǔ)題.10、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關(guān)系時,往往結(jié)合平面幾何知識(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過兩圓的圓心的直線方程)可減小運算量.11、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因為“存在,使得”為真命題,所以,因此上述命題得個充分不必要條件是.故選:B.【點睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.12、B【解析】由方程可得拋物線的焦點和準線,進而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開口向右,焦點坐標(biāo),,準線方程,由拋物線的定義可得拋物線上橫坐標(biāo)為4的點到準線的距離等于5,即,解之可得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】∵方程表示雙曲線,∴,∴.故答案為:.14、①..②..【解析】以點為坐標(biāo)原點,,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)空間向量的線性運算求得向量的坐標(biāo),由此求得,由線面角的空間向量求解方法求得答案.【詳解】解:以點為坐標(biāo)原點,,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如下圖所示)由題意可知,,,因為,,所以,故設(shè)平面的法向量為,則,令,得因為,所以直線與平面所成角的正弦值為故答案為:;.15、2【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的加法法則,對求導(dǎo),再求即可.【詳解】由題設(shè),,所以.故答案為:16、5【解析】,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)2735.【解析】(1)利用給定的遞推公式結(jié)合“當(dāng)時,”計算推理作答.(2)插入所有項構(gòu)成數(shù)列,,再確定數(shù)列的前50項中含有數(shù)列和的項數(shù)計算作答.【小問1詳解】依題意,,當(dāng)時,,兩式相減得:,則有,而,即,所以數(shù)列是以2為首項,2為公式的等比數(shù)列.【小問2詳解】由(1)知,,即,插入的所有項構(gòu)成數(shù)列,,數(shù)列中前插入數(shù)列的項數(shù)為:,而前插入數(shù)列的項數(shù)為45,因此,數(shù)列的前50項中包含數(shù)列前9項,數(shù)列前41項,所以.18、(1)證明見解析.(2)2-.【解析】(1)根據(jù)遞推公式,得到,推出,即可證明數(shù)列是等比數(shù)列;(2)先由(1)求出,即bn=,再錯位相減法,即可求出數(shù)列的和.【小問1詳解】(1)證明:因為an+1=,所以==+,所以-=-=,又a1-≠0,所以數(shù)列為以-=為首項,為公比的等比數(shù)列.【小問2詳解】解:由(1)可得=+,所以bn=,所以Sn=+++…+,①所以Sn=++…++,②①-②得,Sn=++…+-=-,解得Sn=2-.19、(1)拋物線C的方程為,準線方程為(2)或.【解析】(1)將點代入拋物線求出即可得出拋物線方程和準線方程;(2)設(shè)出直線方程,與拋物線聯(lián)立,表示出弦長和即可求出.【小問1詳解】將代入可得,解得,所以拋物線C的方程為,準線方程為;【小問2詳解】由題得,設(shè)直線方程為,,設(shè),聯(lián)立方程,可得,則,所以,因為直線與準線交于點Q,則,則,因為,所以,解得,所以直線l的方程為或.20、(1)(2)【解析】(1)根據(jù)題意列不等式組求解(2)判斷的真假性后分別求解【小問1詳解】由題意得,解得且故m的取值范圍是【小問2詳解】∵為假命題,∴p和q都是真命題,對于命題q,由題意得:恒成立,∴,∴,∴,解得故m的取值范圍是21、.【解析】求得集合,根據(jù),分和,兩種情況討論,結(jié)合二次函數(shù)的性質(zhì),即可求
評論
0/150
提交評論