版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
27.2.4相似三角形的性質(zhì)九年級(jí)下人教版學(xué)習(xí)目標(biāo)新課引入新知學(xué)習(xí)課堂小結(jié)12341.理解并掌握相似三角形中對(duì)應(yīng)線段的比等于相似比,并運(yùn)用其解決問(wèn)題.2.理解相似三角形面積的比等于相似比的平方,并運(yùn)用其解決問(wèn)題.
學(xué)習(xí)目標(biāo)重點(diǎn)難點(diǎn)1.相似三角形的判定方法有哪幾種?①定義:對(duì)應(yīng)邊成比例,對(duì)應(yīng)角相等的兩個(gè)三角形相似;②平行于三角形一邊的直線與另外兩邊相交所構(gòu)成的三角形與原三角形相似;③三邊成比例的兩個(gè)三角形相似;④兩邊成比例且?jiàn)A角相等的兩個(gè)三角形相似;⑤兩角分別相等的兩個(gè)三角形相似;⑥一組直角邊和斜邊成比例的兩個(gè)直角三角形相似.新課引入2.三角形中有各種各樣的幾何量,例如三條邊的長(zhǎng)度,三個(gè)內(nèi)角的度數(shù),高、中線、角平分線的長(zhǎng)度,以及周長(zhǎng)、面積等.如果兩個(gè)三角形相似,那么它們的這些幾何量之間有什么關(guān)系呢?讓我們一起來(lái)探究吧!探究
如圖,△ABC∽△A′B′C′,相似比為k,它們對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線的比各是多少?ABCA'B'C'新知學(xué)習(xí)ABCA'B'C'D'D如圖,△ABC∽△A′B′C′,相似比為k,求它們對(duì)應(yīng)高的比.∴△ABD∽△A'
B'
D'
∴解:如圖,分別作出△ABC和△A'
B'
C'
的高AD和
A'D'則∠ADB=∠A'
D'
B'=90°∵△ABC∽△A′B′C′∴∠B=∠B'
總結(jié):相似三角形對(duì)應(yīng)高的比等于相似比如圖,△ABC∽△A′B′C′,相似比為k,求它們對(duì)應(yīng)角平分線的比.ABCA'B'C'D'D解:如圖,分別作出△ABC和△A'
B'
C'
的角平分線
AD和
A'D',則∠BAD=∠B'A'D'
∵△ABC∽△A′B′C′∴∠B=∠B'
,∴△ABD∽△A'
B'
D'
∴總結(jié):相似三角形對(duì)應(yīng)角平分線的比等于相似比如圖,△ABC∽△A′B′C′,相似比為k,求它們對(duì)應(yīng)中線的比.ABCA'B'C'D'D解:如圖,分別作出△ABC和△A'
B'
C'
的中線AD和
A'D',則∵△ABC∽△A′B′C′∴∠B=∠B'
,
∴△ABD∽△A'
B'
D'
∴總結(jié):相似三角形對(duì)應(yīng)中線的比等于相似比解:如果△ABC∽△A'B'C',相似比為k,那么因此AB=kA'B',BC=kB'C',CA=kC'A',從而思考相似三角形的周長(zhǎng)比也等于相似比嗎?為什么?總結(jié):相似三角形對(duì)應(yīng)中線的比等于相似比綜合以上四個(gè)結(jié)論有:相似三角形對(duì)應(yīng)線段的比等于相似比針對(duì)訓(xùn)練1.如果兩個(gè)相似三角形的對(duì)應(yīng)高的比為2:3,那么對(duì)應(yīng)角平分線的比是
,對(duì)應(yīng)邊上的中線的比是______.2.已知
△ABC∽
△A'B'C',相似比為3:4,若BC邊上的高AD=12cm,則B'C'邊上的高A'D'=______.2:32:316cm3.如圖,△ABC
與
△A′B′C′相似,AD,BE
是△ABC
的高,A′D′,B′E′是
△A′B′C′的高,求證證明:∵△ABC∽△A′B′C′,AD,A′D′分別是
△ABC,△A′B′C′的高,AA′BCDEB′C′D′E′又
BE,B′E′分別是
△ABC,△A′B′C′的高,∴∴∴4.如圖,在△ABC中,兩條中線BE,CD相交于點(diǎn)O,則△EOD的周長(zhǎng):△BOC的周長(zhǎng)為()A.1:2
B.2:3
C.1:3
D.1:4ABE,CD是兩條中線DE是△ABC的中位線DE//BC,SDDDD
△EOD∽△BOC△EOD的周長(zhǎng):△BOC的周長(zhǎng)=1:2
DE//BC△ADE∽△ABC∴△ADG∽△ABH注意找準(zhǔn)對(duì)應(yīng)線段二
相似三角形面積的比思考相似三角形的面積比也等于相似比嗎?為什么?如圖,△ABC∽△A′B′C′,相似比為k,它們的面積比是多少?ABCA'B'C'由前面的結(jié)論,我們有ABCA'B'C'D'D相似三角形面積的比等于相似比的平方.總結(jié):相似三角形面積的比等于相似比的平方.解:在△ABC和△DEF中,∵AB=2DE,AC=2DF,又∵∠D=∠A,ABCDEF∴例1如圖,在△ABC和△DEF中,AB=2DE,AC=2DF,∠A=∠D.若△ABC的邊BC上的高為6,面積為,求△DEF的邊EF上的高和面積.∴△DEF
∽
△ABC
,相似比為∵△ABC的邊BC上的高為6,面積為,∴△DEF的邊EF上的高為×6=3,面積為針對(duì)訓(xùn)練1.判斷題(正確的畫(huà)“√”,錯(cuò)誤的畫(huà)“×”).(1)一個(gè)三角形的各邊長(zhǎng)擴(kuò)大為原來(lái)的5倍,這個(gè)三角形的角平分線也擴(kuò)大為原來(lái)的5倍; (
)(2)一個(gè)三角形的各邊長(zhǎng)擴(kuò)大為原來(lái)的9倍,這個(gè)三角形的面積也擴(kuò)大為原來(lái)的9倍. ( )√
×2.如圖,在△ABC中,點(diǎn)D,E分別是AB,AC的中點(diǎn),若△ADE的面積是3
cm2,則四邊形BDEC的面積為()A.12cm2
B.9cm2
C.6cm2
D.3cm2B已知DE是△ABC的中位線DE//BC,△ADE∽△ABCS△ADE:S△ABC=1:4相似比是1:2S△ADE:S四邊形BDEC=1:33.如圖,在?ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,且AF=2FD.(1)求證:△ABF∽△CEB;(1)證明:∵四邊形ABCD是平行四邊形,∴∠A=∠CAB,∴∠ABF=∠E,在△ABF和△CEB中,∠A=∠C,∠ABF=∠E,∴△ABF∽△CEB.(2)若△CEB的面積為9,求?ABCD的面積.(2)解:∵AF=2FD,∴AD=3FD,∴DF∶BC=1∶3,∵△CEB的面積為9,∴△FDE的面積為1,∴△ABF的面積為4,∴?ABCD的面積=9-1+4=12.∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AD=BC,∴△ABF∽△DEF,△CEB∽△DEF,∴S△ABF∶S△DEF=AF2∶FD2,S△BCE∶S△FDE=BC2∶FD2,解:①當(dāng)AE:ED=2:3時(shí),AE:AD=2:5.∵四邊形ABCD是平行四邊形1.(涼山州中考)在平行四邊形ABCD中,E是AD上一點(diǎn),且點(diǎn)E將AD分為2:3的兩部分,連接BE,AC相交于F,則S△AEF:S△CBF=
.∴AD//BC,AD=BC,AE:BC=2:5.∵△AEF∽△CBF,∴S△AEF:S△CBF=4:25.②當(dāng)AE:ED=3:2時(shí),AE:AD=3:5,同理可得,S△AEF:S△CBF=9:25.注意:AE:ED要分兩種情況討論.4:25或9:25隨堂練習(xí)2.如圖,在△ABC中,DE//BC,BF平分∠ABC,交DE的延長(zhǎng)線于點(diǎn)F.若AD=1,BD=2,BC=4,則EF=______.解析:∵DE//BC
∴∠F=∠FBC∵BF平分∠
ABC∴∠DBF=∠
FBC,∠
F=∠DBF,DB=DF∵DE//BC
∴△ADE∽△ABC∴
,即
,∵DF=DB=2∴3.如圖,D、E分別是△
ABC的邊AB、BC上的點(diǎn),DE//AC,若
,則
的值為(
).A.B.C.D.解析:∵∴BE:EC=1:3,BE:BC=1:4∵DE//AC
∴△DOE∽△COA,△BDE∽△BAC∴
∴D4.如圖,P為平行四邊形ABCD邊AD上一點(diǎn),E、F分別為PB、PC的中點(diǎn),△PEF、△PDC、△PAB的面積分別為
,若S=2,則().A.4B.6C.8D.不能確定C解:過(guò)P作PQ//DC交BC于點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年虛擬現(xiàn)實(shí)產(chǎn)業(yè)勞動(dòng)合同與聘用合同3篇
- 2024年版特定事務(wù)擔(dān)保合同范本版B版
- 2024年版房產(chǎn)協(xié)議簽訂詳解手冊(cè)版B版
- 2024無(wú)債務(wù)離婚合同范本(簡(jiǎn)化版)版
- 2024年規(guī)范有償借款合同書(shū)樣本
- 2024年版舊車買(mǎi)賣合同范例
- 兒保科護(hù)士的工作總結(jié)
- 2025年版安全防范系統(tǒng)安裝調(diào)試保安臨時(shí)工勞動(dòng)合同范本3篇
- 2024年美洲自由貿(mào)易區(qū)交易合同
- 郵遞員合同三篇
- 英語(yǔ)-湖南省天一大聯(lián)考暨郴州市2025屆高考高三第二次教學(xué)質(zhì)量檢測(cè)(郴州二檢懷化統(tǒng)考)試題和答案
- 【MOOC期末】《形勢(shì)與政策》(北京科技大學(xué))期末慕課答案
- 營(yíng)銷專業(yè)安全培訓(xùn)
- 2024年度五星級(jí)酒店廚師團(tuán)隊(duì)管理與服務(wù)合同3篇
- 廣東省廣州市花都區(qū)2024年七年級(jí)上學(xué)期期末數(shù)學(xué)試題【附答案】
- 期末測(cè)試模擬練習(xí) (含答案) 江蘇省蘇州市2024-2025學(xué)年統(tǒng)編版語(yǔ)文七年級(jí)上冊(cè)
- 上海市徐匯區(qū)2024-2025學(xué)年高一語(yǔ)文下學(xué)期期末試題含解析
- 2023年全國(guó)職業(yè)院校技能大賽賽項(xiàng)-ZZ019 智能財(cái)稅基本技能賽題 - 模塊三
- 冠心病中西醫(yī)診療課件
- 解析電力施工項(xiàng)目的信息化管理
- 火炬介紹 音速火炬等
評(píng)論
0/150
提交評(píng)論