版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆吉林省通榆縣一中數(shù)學(xué)高三上期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.2.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數(shù),則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.3.已知,則的大小關(guān)系為A. B. C. D.4.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.5.設(shè)雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.6.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.7.拋物線的焦點為,則經(jīng)過點與點且與拋物線的準線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個8.執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為()A. B.C.3或 D.或9.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯誤的是()A.該超市2018年的12個月中的7月份的收益最高B.該超市2018年的12個月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元11.設(shè)、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且12.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在區(qū)間內(nèi)有且僅有兩個零點,則實數(shù)的取值范圍是_____.14.某同學(xué)周末通過拋硬幣的方式?jīng)Q定出去看電影還是在家學(xué)習(xí),拋一枚硬幣兩次,若兩次都是正面朝上,就在家學(xué)習(xí),否則出去看電影,則該同學(xué)在家學(xué)習(xí)的概率為____________.15.展開式中的系數(shù)為_________.(用數(shù)字做答)16.若實數(shù)x,y滿足約束條件,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對稱軸方程.18.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19.(12分)已知橢圓:的兩個焦點是,,在橢圓上,且,為坐標原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標準方程;(2)求證:為定值.20.(12分)設(shè)等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列和構(gòu)造數(shù)表M,與數(shù)表;記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).記數(shù)表中位于第i行第j列的元素為,其中(,,).如:,.(1)設(shè),,請計算,,;(2)設(shè),,試求,的表達式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;(3)設(shè),,對于整數(shù)t,t不屬于數(shù)表M,求t的最大值.21.(12分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院人進行了問卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計男女合計已知在全部人中隨機抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為患心肺疾病與性別有關(guān)?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)22.(10分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結(jié)果,不要求過程).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.2、C【解析】
先確定摸一次中獎的概率,5個人摸獎,相當(dāng)于發(fā)生5次試驗,根據(jù)每一次發(fā)生的概率,利用獨立重復(fù)試驗的公式得到結(jié)果.【詳解】從6個球中摸出2個,共有種結(jié)果,兩個球的號碼之和是3的倍數(shù),共有摸一次中獎的概率是,5個人摸獎,相當(dāng)于發(fā)生5次試驗,且每一次發(fā)生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復(fù)試驗中恰好發(fā)生次的概率,考查獨立重復(fù)試驗的概率,解題時主要是看清摸獎5次,相當(dāng)于做了5次獨立重復(fù)試驗,利用公式做出結(jié)果,屬于中檔題.3、D【解析】
分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.4、B【解析】
設(shè),則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.5、B【解析】
設(shè)雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質(zhì),要注意雙曲線焦點位置,屬于中檔題.6、B【解析】
首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎(chǔ)題.7、B【解析】
圓心在的中垂線上,經(jīng)過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.【點睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、D【解析】
根據(jù)逆運算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項.【詳解】因為,所以當(dāng),解得
,所以3是輸入的x的值;當(dāng)時,解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點睛】本題考查了程序框圖的簡單應(yīng)用,通過結(jié)果反求輸入的值,屬于基礎(chǔ)題.9、A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.10、D【解析】
用收入減去支出,求得每月收益,然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎(chǔ)題.11、B【解析】由且可得,故選B.12、A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對函數(shù)零點問題等價轉(zhuǎn)化,分離參數(shù)討論交點個數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個零點,,等價于函數(shù)恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數(shù)零點問題,根據(jù)函數(shù)零點個數(shù)求參數(shù)的取值范圍,關(guān)鍵在于對函數(shù)零點問題恰當(dāng)變形,等價轉(zhuǎn)化,數(shù)形結(jié)合求解.14、【解析】
采用列舉法計算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學(xué)習(xí)只有1種情況,即(正,正),故該同學(xué)在家學(xué)習(xí)的概率為.故答案為:【點睛】本題考查古典概型的概率計算,考查學(xué)生的基本計算能力,是一道基礎(chǔ)題.15、210【解析】
轉(zhuǎn)化,只有中含有,即得解.【詳解】只有中含有,其中的系數(shù)為故答案為:210【點睛】本題考查了二項式系數(shù)的求解,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.16、3【解析】
作出可行域,可得當(dāng)直線經(jīng)過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯(lián)立,可求得點,當(dāng)直線經(jīng)過點時,.故答案為:3.【點睛】本題考查線性規(guī)劃,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2),,.【解析】
(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.18、(1);(2).【解析】
(1)令可求得的值,令時,由可得出,兩式相減可得的表達式,然后對是否滿足在時的表達式進行檢驗,由此可得出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,對分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時,;當(dāng)時,由得,兩式相減得,.滿足.因此,數(shù)列的通項公式為;(2).①當(dāng)為奇數(shù)時,;②當(dāng)為偶數(shù)時,.綜上所述,.【點睛】本題考查數(shù)列通項的求解,同時也考查了奇偶分組求和法,考查計算能力,屬于中等題.19、(1)(2)證明見解析【解析】
(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設(shè)直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標,表示出,根據(jù)韋達定理即可求證為定值.【詳解】(1)因為,由橢圓的定義得,,點在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設(shè),,直線的斜率為,設(shè)直線的方程為,聯(lián)立方程組,消去,整理得,所以,,直線的直線方程為,令,則,同理,所以:,代入整理得,所以為定值.【點睛】本小題主要考查橢圓標準方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問題,屬于中檔題.20、(1)(2)詳見解析(3)29【解析】
(1)將,代入,可求出,,可代入求,,可求結(jié)果.(2)可求,,通過反證法證明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【詳解】(1)由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,則,,得,故.(2)證明:已知.,由題意知等差數(shù)列的通項公式為:;等差數(shù)列的通項公式為:,得,,.得,,,.所以若,則存在,,使,若,則存在,,,使,因此,對于正整數(shù),考慮集合,,,即,,,,,,.下面證明:集合中至少有一元素是7的倍數(shù).反證法:假設(shè)集合中任何一個元素,都不是7的倍數(shù),則集合中每一元素關(guān)于7的余數(shù)可以為1,2,3,4,5,6,又因為集合中共有7個元素,所以集合中至少存在兩個元素關(guān)于7的余數(shù)相同,不妨設(shè)為,,其中,,.則這兩個元素的差為7的倍數(shù),即,所以,與矛盾,所以假設(shè)不成立,即原命題成立.即集合中至少有一元素是7的倍數(shù),不妨設(shè)該元素為,,,則存在,使,,,即,,,由已證可知,若,則存在,,使,而,所以為負整數(shù),設(shè),則,且,,,,所以,當(dāng),時,對于整數(shù),若,則成立.(3)下面用反證法證明:若對于整數(shù),,則,假設(shè)命題不成立,即,且.則對于整數(shù),存在,,,,,使成立,整理,得,又因為,,所以且是7的倍數(shù),因為,,所以,所以矛盾,即假設(shè)不成立.所以對于整數(shù),若,則,又由第二問,對于整數(shù),則,所以的最大值,就是集合中元素的最大值,又因為,,,,所以.【點睛】本題考查數(shù)列的綜合應(yīng)用,以及反證法,求最值,屬于難題.21、(1)列聯(lián)表見解析,有的把握認為患心肺疾病與性別有關(guān),理由見解析;(2).【解析】
(1)結(jié)合題意完善列聯(lián)表,計算出的觀測值,對照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補充如下:患心肺疾病不患心肺疾病合計男女合計.故有的把握認為患心肺疾病與性別有關(guān);(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年小學(xué)班主任例會制度范文(二篇)
- 2024年國際專利技術(shù)許可合同例文(三篇)
- 2024年實習(xí)期個人工作總結(jié)參考模板(七篇)
- 2024年員工試用期工作總結(jié)例文(三篇)
- 2024年基本公共衛(wèi)生工作問責(zé)制度范例(二篇)
- 2024年學(xué)生會部員量化考核制度例文(四篇)
- 2024年天貓運營主管崗位的具體職責(zé)概述范文(二篇)
- 【提升新時代建筑施工企業(yè)行政管理工作效果探究開題報告1800字】
- 2024年學(xué)生暑假學(xué)習(xí)計劃范例(二篇)
- 【《企業(yè)銷售人員激勵問題及策略探析-以查爾斯電子公司為例(數(shù)據(jù)論文)》13000字】
- 椎管內(nèi)麻醉的相關(guān)新進展
- 河北省衡水中學(xué)2022-2023學(xué)年高一上學(xué)期綜合素質(zhì)檢測二數(shù)學(xué)試題含解析
- 《中國潰瘍性結(jié)腸炎診治指南(2023年)》解讀
- 辦理寬帶拆機委托書
- 2024年ACOG-《第一產(chǎn)程及第二產(chǎn)程管理》指南要點
- 一線員工安全心得體會范文(3篇)
- 2高空作業(yè)安全技術(shù)交底(涉及高空作業(yè)者交底后必須簽字)
- 牛頓第三定律說課市公開課一等獎省賽課微課金獎?wù)n件
- (2024年)北京師范大學(xué)網(wǎng)絡(luò)教育《教育學(xué)原理》歡迎您
- 火車站物流園區(qū)建設(shè)項目物有所值評價報告
- 2024年工裝夾具相關(guān)項目營銷策略方案
評論
0/150
提交評論